Sustainability Assessment in Housing Building Organizations for the Design of Strategies against Climate Change

Ulises Mercado Burciaga


One of the biggest problems facing humanity is climate change, and the construction industry is one of the sectors causing the greatest impact. Therefore, design strategies accompanied by new methodologies are necessary. In this sense, this paper aims to assess sustainability for the design of organizational strategies against climate change, based on a holistic and systemic approach to sustainability development, in order to contribute to the decision-making in housing building organizations. The assessment was based on: 1) climate change indicators were selected from a case study; 2) a survey based on climate change indicators was designed and applied to 21% of the total organizations under study; and 3) critical indicators were identified. The result shows that 58% of the climate change indicators are critical and give evidence of the negative outlook that housing building organizations have in terms of sustainability. About 69% of these indicators belong to the cultural dimension. This demonstrates the lack of knowledge, customs, habits, and commitment to implementing sustainable strategies against climate change in these organizations. Finally, the results can contribute to designing strategies to promote sustainable building by the local government, and thus achieve more sustainable organizations that contribute to reducing their impact on climate change.


Doi: 10.28991/HIJ-2020-01-04-01

Full Text: PDF


Climate Change; Sustainable Building; Organizational Strategies; Sustainable Assessment; Holistic and Systemic.


Cambio Climático (IPCC), (2014). Mitigación del cambio climático. Resumen para responsables de políticas. Ginebra, Switzerland. Available online: (accessed on May 2020).

United Nations. (1998). Protocolo de kyoto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, Available online: (accessed on March 2020).

National Institute of Ecology and Climate Change (INECC). (2018). Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero. Análisis de resultados, Mexico. Available online: 312045/INEGYCEI6CN_26_marzo_2018.pdf.

International Energy Agency (IEA). (2017). World energy balances: an overview of global trends. Available online: (accessed on May 2020).

SENER. (2016). Balance Nacional de Energía, Mexico. Available online: 248570/ Balance_Nacional_de_Energ_a_2015__2_.pdf (accessed on March 2020).

Abarca-Guerrero, L., & Leandro-Hernández, A. G. (2017). Situación actual de la gestión de los materiales de construcción en Costa Rica. Revista Tecnología En Marcha, 29(4), 111-122. doi:10.18845/tm.v29i4.3042.

Bamgbade, J. A., Nawi, M. N. M., & Kamaruddeen, A. M. (2017). Construction Firms’ Sustainability Compliance Level. Journal of Engineering Science and Technology, 12, 126-36.

SENER. (2017). Conuee, IEA, Casedi, Wri México, Giz, Danish Energy Agency, INEVV, Hoja de Ruta para el Código y Normas de Eficiencia Energética para Edificaciones en México, 38. Available online: attachment/file/215225/Hoja_de_Ruta_para_el_C_digo_y_Normas_EE_para_Edificaciones_M_xico_ES_Fin....pdf (accessed on March 2020).

Almeida, C. P., Ramos, A. F., & Silva, J. M. (2018). Sustainability assessment of building rehabilitation actions in old urban centres. Sustainable Cities and Society, 36, 378–385. doi:10.1016/j.scs.2017.10.014.

Arvizu-Piña, V. A., & Cuchí Burgos, A. (2017). Promoting sustainability in Mexico’s building sector via environmental product declarations. The International Journal of Life Cycle Assessment, 22(11), 1744-1759. doi:10.1007/s11367-017-1269-z.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., … Canadell, J. G. (2018). Global Carbon Budget 2018. Earth System Science Data, 10(4), 2141–2194. doi:10.5194/essd-10-2141-2018.

Senaratne, S., Lambrousis, G., Mirza, O., Tam, V. W. Y., & Kang, W.-H. (2017). Recycled Concrete in Structural Applications for Sustainable Construction Practices in Australia. Procedia Engineering, 180, 751–758. doi:10.1016/j.proeng.2017.04.235.

Aydin, E. (2016). Novel coal bottom ash waste composites for sustainable construction. Construction and Building Materials, 124, 582–588. doi:10.1016/j.conbuildmat.2016.07.142.

Joshua, O., Olusola, K. O., Busari, A. A., Omuh, I. O., Ogunde, A. O., Amusan, L. M., & Ezenduka, C. J. (2018). Data on the pozzolanic activity in coconut shell ash (CSA) for use in sustainable construction. Data in Brief, 18, 1142–1145. doi:10.1016/j.dib.2018.03.125.

Daunfeldt, S.-O., Johansson, D., & Halvarsson, D. (2015). Using the eurostat-OECD definition of high-growth firms: a cautionary note. Journal of Entrepreneurship and Public Policy, 4(1), 50–56. doi:10.1108/jepp-05-2013-0020.

Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., … Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609), 631–639. doi:10.1038/nature18307.

Ullah, W., Noor, S., & Tariq, A. (2018). The development of a basic framework for the sustainability of residential buildings in Pakistan. Sustainable Cities and Society, 40, 365–371. doi:10.1016/j.scs.2018.04.009.

Rocchi, L., Kadziński, M., Menconi, M. E., Grohmann, D., Miebs, G., Paolotti, L., & Boggia, A. (2018). Sustainability evaluation of retrofitting solutions for rural buildings through life cycle approach and multi-criteria analysis. Energy and Buildings, 173, 281–290. doi:10.1016/j.enbuild.2018.05.032

Haider, H., Hewage, K., Umer, A., Ruparathna, R., Chhipi-Shrestha, G., Culver, K., … Sadiq, R. (2018). Sustainability assessment framework for small-sized urban neighbourhoods: An application of fuzzy synthetic evaluation. Sustainable Cities and Society, 36, 21–32. doi:10.1016/j.scs.2017.09.031.

Gonzalez-Garcia, S., Manteiga, R., Moreira, M. T., & Feijoo, G. (2018). Assessing the sustainability of Spanish cities considering environmental and socio-economic indicators. Journal of Cleaner Production, 178, 599–610. doi:10.1016/j.jclepro.2018.01.056.

Dong, Y. H., & Ng, S. T. (2016). A modeling framework to evaluate sustainability of building construction based on LCSA. The International Journal of Life Cycle Assessment, 21(4), 555–568. doi:10.1007/s11367-016-1044-6.

Liu, G., Zheng, S., Xu, P., & Zhuang, T. (2018). An ANP-SWOT approach for ESCOs industry strategies in Chinese building sectors. Renewable and Sustainable Energy Reviews, 93, 90–99. doi:10.1016/j.rser.2018.03.090.

Hernández, F. J., Ayón, H. H., & Ovalle, A. D. C. V. (2016). Evaluación de la sustentabilidad en organizaciones por medio del Modelo NOP. Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias: CIBA, 5(9), 111.

Mercado, U. (2019). Diseño de estrategias organizacionales frente al cambio climático desde un enfoque de la sustentabilidad, caso: el sector de la edificación de viviendas en Nayarit, Universidad Autónoma de Nayarit, Sinaloa, Mexico. Available online: (accessed on March 2020).

U. Mercado, F. Hernández, (2019). Marco de indicadores para cambio climático para organizaciones del sector de edificación de viviendas desde un enfoque de la sustentabilidad, in: Casos Gestión Y Sustentabilidad En Las Organ., UNAM FCA P, 269–316.

Nußholz, J. L. K., Nygaard Rasmussen, F., & Milios, L. (2019). Circular building materials: Carbon saving potential and the role of business model innovation and public policy. Resources, Conservation and Recycling, 141, 308–316. doi:10.1016/j.resconrec.2018.10.036.

Mercado Burciaga, U., Sáez, P. V., & Javier Hernández Ayón, F. (2019). Strategies to Reduce CO2 Emissions in Housing Building by Means of CDW. Emerging Science Journal, 3(5), 274–284. doi:10.28991/esj-2019-01190.

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. D. P. (2014). Metodología de la investigación. Mcgraw-hill. McGraw-Hill, New York, United States.

Full Text: PDF

DOI: 10.28991/HIJ-2020-01-04-01


  • There are currently no refbacks.

Copyright (c) 2020 Ulises Mercado Burciaga