Physicochemical and Microstructural Characterization of Klias Peat, Lumadan POFA, and GGBFS for Geopolymer Based Soil Stabilization

Adriana E. Amaludin, Hidayati Asrah, Habib M. Mohamad, Hassanel Z. bin Amaludin, Nazrein A. bin Amaludin


Peat soils are highly heterogeneous and considered problematic because they have a high moisture content and low shear strength. It requires stabilization to enhance its engineering properties before it is transformed into a viable construction material. The use of geopolymers as stabilizer materials for weak soils has been on the rise recently due to their low carbon footprint compared to the use of conventional stabilizer materials like cement. Geopolymerization occurs as a result of the alkali activation of aluminosilicate materials. In this study, peat soil and the aluminosilicate materials Palm Oil Fuel Ash (POFA) and Ground Granulated Blast Furnace Slag (GGBFS) are characterized to assess their suitability as geopolymer precursor materials. A series of laboratory studies were carried out to determine the physicochemical properties of the materials, such as particle size distribution, moisture and organic content, specific gravity, pH, and electrical conductivity. Furthermore, the XRD, XRF, and FESEM tests were carried out to ascertain the mineral characteristics, elemental chemical composition, and morphological characteristics of these materials, respectively. The peat soil is classified as hemic peat with sufficient aluminosilicate content (Si/Al ratio of 2.11). The POFA is identified as Class F pozzolan with adequate Si+Al+Fe oxide content (67.9%), as stipulated by ASTM C618. The GGBFS material was found to be appropriate for geopolymer production, with a Si/Al ratio of 2.17, a hydration modulus of 2.38 (good hydration), and a basicity coefficient of 1.32 (alkaline material favorable for geopolymerization). Based on the geopolymer precursor material suitability assessment criteria, all the materials assessed were deemed suitable for geopolymerization, and the effectiveness of POFA-GGBFS geopolymer to improve peat soil properties should be studied in depth. At present, there are limited studies pertaining to the use of alkali-activated POFA-GGBFS blends to improve peat soil properties. As a result of this material characterization phase, planned works involving the compressive strength testing program on alkali-activated POFA-GGBFS-peat soil blends at ambient temperature will be carried out in the near future. The eventual aim of this research is to remediate the peat soil to be repurposed as road subgrade material.


Doi: 10.28991/HIJ-2023-04-02-07

Full Text: PDF


Geopolymer; Peat Soil; Palm Oil Fuel Ash; Ground Granulated Blast Furnace Slag; Material Characterisation.


Huat, B. B., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of organic soils and peat. CRC Press, London, United Kingdom. doi:10.1201/b15627.

Rikmann, E., Zekker, I., Teppand, T., Pallav, V., Shanskiy, M., Mäeorg, U., Tenno, T., Burlakovs, J., & Liiv, J. (2021). Relationship between phase composition and mechanical properties of peat soils stabilized using oil shale ash and pozzolanic additive. Water (Switzerland), 13(7), 942. doi:10.3390/w13070942.

Nicholson, P. G. (2015). Soil improvement and ground modification methods. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/C2012-0-02804-9.

Noor Azline, M. N., Abd Aziz, F. N. A., & Suleiman Juma, A. (2015). Effect of Ground Granulated Blast Furnace Slag on Compressive Strength of POFA Blended Concrete. Applied Mechanics and Materials, 802, 142–148. doi:10.4028/

Qaidi, S., Najm, H. M., Abed, S. M., Ahmed, H. U., Al Dughaishi, H., Al Lawati, J., Sabri, M. M., Alkhatib, F., & Milad, A. (2022). Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials, 15(20), 7098. doi:10.3390/ma15207098.

Adhikari, B., Khattak, M. J., & Adhikari, S. (2021). Mechanical and durability characteristics of flyash-based soil-geopolymer mixtures for pavement base and subbase layers. International Journal of Pavement Engineering, 22(9), 1193–1212. doi:10.1080/10298436.2019.1668562.

Khasib, I. A., & Daud, N. N. N. (2020). Physical and Mechanical Study of Palm Oil Fuel Ash (POFA) based Geopolymer as a Stabilizer for Soft Soil. Applied Engineering and Sciences, 28(S2). doi:10.47836/pjst.28.s2.12.

Arulrajah, A., Kua, T.-A., Phetchuay, C., Horpibulsuk, S., Mahghoolpilehrood, F., & Disfani, M. M. (2016). Spent Coffee Grounds–Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 28(5), 4015197. doi:10.1061/(asce)mt.1943-5533.0001496.

Chung, L. L. P., Wong, Y. C., & Arulrajah, A. (2021). The Application of Spent Coffee Grounds and Tea Wastes as Additives in Alkali-Activated Bricks. Waste and Biomass Valorization, 12(11), 6273–6291. doi:10.1007/s12649-021-01453-7.

Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. T. (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8(4), 395–405. doi:10.1007/s11440-012-0200-9.

Chen, K., Wu, D., Zhang, Z., Pan, C., Shen, X., Xia, L., & Zang, J. (2022). Modeling and optimization of fly ash–slag-based geopolymer using response surface method and its application in soft soil stabilization. Construction and Building Materials, 315, 125723. doi:10.1016/j.conbuildmat.2021.125723.

Khanday, S. A., Hussain, M., & Das, A. K. (2021). Stabilization of Indian peat using alkali-activated ground granulated blast furnace slag. Bulletin of Engineering Geology and the Environment, 80(7), 5539–5551. doi:10.1007/s10064-021-02248-9.

Abdeldjouad, L., Asadi, A., Nahazanan, H., Huat, B. B. K., Dheyab, W., & Elkhebu, A. G. (2019). Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering, 5, 4. doi:10.1007/s40891-019-0157-y.

Khasib, I. A., Daud, N. N. N., & Nasir, N. A. M. (2021). Strength development and microstructural behavior of soils stabilized with palm oil fuel ash (POFA)-based geopolymer. Applied Sciences (Switzerland), 11(8), 3572. doi:10.3390/app11083572.

Zainuddin, A. N., Mukri, M., & Sidek, N. (2022). Investigation on Soil Strength and Microstructure of Palm Oil Boiler Ash with Sodium Hydroxide and Sodium Silicate as Alkaline Solution. International Journal of Sustainable Construction Engineering and Technology, 13(1), 57–67. doi:10.30880/ijscet.2022.13.01.006.

Yahya, Z., Abdullah, M. M. A. B., Hussin, K., Ismail, K. N., Razak, R. A., & Sandu, A. V. (2015). Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials, 8(5), 2227–2242. doi:10.3390/ma8052227.

Kwek, S. Y., Awang, H., & Cheah, C. B. (2021). Influence of liquid-to-solid and alkaline activator (Sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkali-activated palm oil fuel ash geopolymer. Materials, 14(15), 4253. doi:10.3390/ma14154253.

Amaludin, A. E., Asrah, H., & Mohamad, H. M. (2023). A Review of Advances in Peat Soil Stabilisation Technology: Exploring the Potential of Palm Oil Fuel Ash Geopolymer as a Soil Stabiliser Material. Civil Engineering Journal (Iran), 9(8), 2085–2104. doi:10.28991/CEJ-2023-09-08-017.

Abdullah, H. H. (2020). An experimental investigation on stabilisation of clay soils with fly-ash based geopolymer. Ph.D. Thesis, Curtin University, Perth, Australia.

Pourakbar, S., Asadi, A., Huat, B. B. K., & Fasihnikoutalab, M. H. (2015). Soil stabilisation with alkali-activated agro-waste. Environmental Geotechnics, 2(6), 359–370. doi:10.1680/envgeo.15.00009.

ASTM C618. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.2.

ACI 233R-17. (2017). Guide to the Use of Slag Cement in Concrete and Mortar. American Concrete Institute (ACI), Michigan, United States.

Ghosh, K., & Ghosh, P. (2020). Alkali Activated Fly Ash: Blast Furnace Slag Composites. CRC Press, Boca Raton, United States. doi:10.1201/9781003082460.

Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. Handbook of alkali-activated cements, mortars and concretes, 19-47, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781782422884.1.19.

Manjunath, R., & Narasimhan, M. C. (2020). Alkali-activated concrete systems: a state of art. New Materials in Civil Engineering, 459–491, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-818961-0.00013-2.

Mohamad, H. M., Zainorabidin, A., & Mohamad, M. I. (2022). Maximum Strain Effect and Secant Modulus Variation of Hemic Peat Soil at large Deformation due to Cyclic Loading. Civil Engineering Journal, 8(10), 2243-2260. doi:10.28991/CEJ-2022-08-10-015.

Asrah, H., Mirasa, A. K., & Mannan, A. (2015). The performance of ultrafine palm oil fuel ash in suppressing the alkali silica reaction in mortar bar. International Journal of Engineering Applied Science, 9, 60-66.

Tonduba, Y. W., Mirasa, A. K., & Asrah, H. (2021). Utilization of Ultrafine Palm Oil Fuel Ash in Interlocking Compressed Earth Brick. International Journal of GEOMATE, 21(87), 70–78. doi:10.21660/2021.87.j2245.

Hamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A., & Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 40, 102286. doi:10.1016/j.jobe.2021.102286.

Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials Design (1980-2015), 56, 833–841. doi:10.1016/j.matdes.2013.11.080.

Salih, M. A., Farzadnia, N., Abang Ali, A. A., & Demirboga, R. (2015). Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Construction and Building Materials, 93, 289–300. doi:10.1016/j.conbuildmat.2015.05.119.

Tonduba, Y. W., Mirasa, A. K., & Asrah, H. (2019). Applicability of Palm Oil Fuel Ash in Interlocking Compressed Earth Brick - A Preliminary Assessment. Journal of Physics: Conference Series, 1358(1), 12027. doi:10.1088/1742-6596/1358/1/012027.

Sas, W., Dzięcioł, J., Radzevičius, A., Radziemska, M., Dapkienė, M., Šadzevičius, R., Skominas, R., & Głuchowski, A. (2021). Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications. Materials, 14(20), 6029. doi:10.3390/ma14206029.

Abdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Nergis, D. D. B., Rahim, S. Z. A., Omar, M. F., Sandu, A. V., Vizureanu, P., & Syafwandi. (2022). Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Materials, 15(1), 375. doi:10.3390/ma15010375.

ISO 13320. (2020). Particle Size Analysis-Laser Diffraction Methods. International Organization for Standardization (ISO), Vernier, Geneva, Switzerland.

Arvaniti, E. C., Juenger, M. C. G., Bernal, S. A., Duchesne, J., Courard, L., Leroy, S., Provis, J. L., Klemm, A., & De Belie, N. (2015). Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux et Constructions, 48(11), 3675–3686. doi:10.1617/s11527-014-0430-4.

Cyr, M., & Tagnit-Hamou, A. (2001). Particle size distribution of fine powders by LASER diffraction spectrometry. Case of cementitious materials. Materials and Structures/Materiaux et Constructions, 34(6), 342–350. doi:10.1007/bf02486485.

Polakowski, C., Ryżak, M., Sochan, A., Beczek, M., Mazur, R., & Bieganowski, A. (2021). Particle size distribution of various soil materials measured by laser diffraction—the problem of reproducibility. Minerals, 11(5). doi:10.3390/min11050465.

Jewell, R., & Rathbone, R. (2009). Optical Properties of Coal Combustion Byproducts for Particle-Size Analysis by Laser Diffraction. Coal Combustion and Gasification Products, 1(1), 1–6. doi:10.4177/ccgp-d-09-00001.

von Post, L. (1922). Sweden's Geological Survey's peat inventory and some of its results so far. Swedish Moss Culture Association's Journal. (In Swedish)

BS 1377-2: 1990 (1990). Methods of Test for Soil for Civil Engineering Purposes – Part 2: Classification tests. British Standard, London, United Kingdom.

BS 1377-3: 1990 (1990). Methods of Test for Soil for Civil Engineering Purposes – Part 3: Chemical and electro-chemical tests. British Standard, London, United Kingdom.

O’Kelly, B. C. (2022). Discussion of “Physio-Chemical Properties, Consolidation, and Stabilization of Tropical Peat Soil Using Traditional Soil Additives — A State of the Art Literature Review” by Afnan Ahmada, Muslich Hartadi Sutantoa, Mohammed Ali Mohammed Al-Bareda, Indra Sati Hamonangan Harahapa, Seyed Vahid Alavi Nezhad Khalil Abada, Mudassir Ali Khana. KSCE Journal of Civil Engineering, 26(8), 3455–3459. doi:10.1007/s12205-022-2313-5.

Mironova, N., Yefremova, O., Biletska, H., Bloshchynskyi, I., Koshelnyk, I., Sych, S., ... & Kravchuk, V. (2022). Soil quality evaluation in urban ecosystems during the covid-19 pandemic. HighTech and Innovation Journal, 3, 43-51. doi:10.28991/HIJ-SP2022-03-04.

BS 1377-9: 1990 (1990). Methods of Test for Soil for Civil Engineering Purposes – Part 9: In Situ tests. British Standard, London, United Kingdom.

ASTM D2976-22. (2022). Standard Test Method for pH of Peat Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D2976-22.

Rauch, A. F., Katz, L. E., & Liljestrand, H. M. (1993). Aa analysis of the mechanisms and efficacy of three liquid chemical soil stabilizers. FHWA/TX-03/1993-1, Volume 1, University of Texas, Austin, United States.

Kumar, D., Soni, A., & Kumar, M. (2022). Retrieval of Land Surface Temperature from Landsat-8 Thermal Infrared Sensor Data. Journal of Human, Earth, and Future, 3(2), 159-168. doi:10.28991/HEF-2022-03-02-02.

Khan, H., Yerramilli, A. S., D’Oliveira, A., Alford, T. L., Boffito, D. C., & Patience, G. S. (2020). Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Canadian Journal of Chemical Engineering, 98(6), 1255–1266. doi:10.1002/cjce.23747.

Gates-Rector, S., & Blanton, T. (2019). The Powder Diffraction File: a quality materials characterization database. Powder Diffraction, 34(4), 352–360. doi:10.1017/S0885715619000812.

Yusuf, T. O. (2015). Effects of palm oil fuel ash and metakaolin blend on properties of geopolymer mortar. PhD Thesis, Universiti Teknologi Malaysia, Skudai, Malaysia.

ASTM E1621-21. (2021). Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM International, Pennsylvania, United States. doi:10.1520/E1621-21.

Khadayeir, A. A., Wannas, A. H., & Yousif, F. H. (2022). Effect of Applying Cold Plasma on Structural, Antibacterial and Self Cleaning Properties of α-Fe2O3 (HEMATITE) Thin Film. Emerging Science Journal, 6(1), 75-85. doi:10.28991/ESJ-2022-06-01-06.

Khare, T., Oak, U., Shriram, V., Verma, S. K., & Kumar, V. (2019). Biologically synthesized nanomaterials and their antimicrobial potentials. Comprehensive Analytical Chemistry, 263–289, Elsevier, Amsterdam, Netherlands. doi:10.1016/bs.coac.2019.09.002.

ASTM E986-04. (2017). Standard Practice for Scanning Electron Microscope Beam Size Characterization. ASTM International, Pennsylvania, United States. doi:10.1520/E0986-04R17.

Huggett, J. M., & Shaw, H. F. (1997). Field emission scanning electron microscopy — a high-resolution technique for the study of clay minerals in sediments. Clay Minerals, 32(2), 197–203. doi:10.1180/claymin.1997.032.2.03.

Nguyen, J. N. T., & Harbison, A. M. (2017). Scanning Electron Microscopy Sample Preparation and Imaging. Molecular Profiling, 71–84, Springer. doi:10.1007/978-1-4939-6990-6_5.

Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north Borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.

Sapar, N. I. F., Matlan, S. J., Mohamad, H. M., Alias, R., & Ibrahim, A. (2020). a Study on Physical and Morphological Characteristics of. International Journal of Advanced Research, in Engineering and Technology, 11(11), 542–553. doi:10.34218/IJARET.11.11.2020.051.

Paul, A., & Hussain, M. (2020). Sustainable Use of GGBS and RHA as a Partial Replacement of Cement in the Stabilization of Indian Peat. International Journal of Geosynthetics and Ground Engineering, 6, 4. doi:10.1007/s40891-020-0185-7.

Paul, A., & Hussain, M. (2020). Cement Stabilization of Indian Peat: An Experimental Investigation. Journal of Materials in Civil Engineering, 32(11), 4020350. doi:10.1061/(asce)mt.1943-5533.0003363.

Lau, J., Biscontin, G., & Berti, D. (2023). Effects of biochar on cement-stabilised peat soil. Proceedings of the Institution of Civil Engineers: Ground Improvement, 176(2), 76–87. doi:10.1680/jgrim.19.00013.

Tremblay, H., Duchesne, J., Locat, J., & Leroueil, S. (2002). Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39(3), 535–546. doi:10.1139/t02-002.

Paul, A., & Hussain, M. (2022). pH and Electrical Conductivity of Cement-Treated Peat. Proceedings of the 7th Indian Young Geotechnical Engineers Conference, 167–173, Springer, Singapore. doi:10.1007/978-981-16-6456-4_19.

Khalid, N. H. A., Hussin, M. W., Mirza, J., Ariffin, N. F., Ismail, M. A., Lee, H.-S., Mohamed, A., & Jaya, R. P. (2016). Palm oil fuel ash as potential green micro-filler in polymer concrete. Construction and Building Materials, 102, 950–960. doi:10.1016/j.conbuildmat.2015.11.038.

Kroehong, W., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2011). Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Construction and Building Materials, 25(11), 4095–4104. doi:10.1016/j.conbuildmat.2011.04.062.

Lim, N. H. A. S., Ismail, M. A., Lee, H. S., Hussin, M. W., Sam, A. R. M., & Samadi, M. (2015). The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar. Construction and Building Materials, 93, 29–34. doi:10.1016/j.conbuildmat.2015.05.107.

Lim, A., Mirasa, A. K., Asrah, H., & Tian, X. (2022). Maximizing Volume of Spent Bleaching Earth Ash (Sbea) Pozzolan Used As Cement Replacement in Mortar Through Mechanical Activation. Jurnal Teknologi/Technology Journal, 84(5), 105–116. doi:10.11113/jurnalteknologi.v84.18177.

ASTM C989-09. (2009). Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International, Pennsylvania, United States.

Chesner, W. H., Collins, R. J., MacKay, M. H., & Emery, J. (2002). User guidelines for waste and by-product materials in pavement construction. FHWA-RD-97-148, Guideline Manual, Report No. 480017. Recycled Materials Resource Center,

Federal Highway Administration, Washington, United States.

Shehata, M. H., Thomas, M. D. A., & Bleszynski, R. F. (1999). The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cement and Concrete Research, 29(12), 1915–1920. doi:10.1016/S0008-8846(99)00190-8.

Dinakar, P., Kartik Reddy, M., & Sharma, M. (2013). Behaviour of self-compacting concrete using Portland pozzolana cement with different levels of fly ash. Materials and Design, 46, 609–616. doi:10.1016/j.matdes.2012.11.015.

Abdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Rahim, S. Z. A., Rychta, M., Wnuk, I., Nabiałek, M., Muskalski, K., Tahir, M. F. M., Syafwandi, Isradi, M., & Gucwa, M. (2021). Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process. Materials, 14(11), 1–19. doi:10.3390/ma14112833.

Alias Tudin, D. Z., Rizalman, A. N., & Asrah, H. (2018). Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar. E3S Web of Conferences, 65, 02011. doi:10.1051/e3sconf/20186502011.

Chandara, C., Sakai, E., Azizli, K. A. M., Ahmad, Z. A., & Hashim, S. F. S. (2010). The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construction and Building Materials, 24(9), 1590–1593. doi:10.1016/j.conbuildmat.2010.02.036.

Salih, M. A., Abang Ali, A. A., & Farzadnia, N. (2014). Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 65, 592–603. doi:10.1016/j.conbuildmat.2014.05.031.

Bayer Ozturk, Z., & Eren Gultekin, E. (2015). Preparation of ceramic wall tiling derived from blast furnace slag. Ceramics International, 41(9), 12020–12026. doi:10.1016/j.ceramint.2015.06.014.

Richet, P., Bottinga, Y., Denielou, L., Petitet, J. P., & Tequi, C. (1982). Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochimica Acta, 46(12), 2639–2658. doi:10.1016/0016-7037(82)90383-0.

Mysen, B., & Richet, P. (2019). Silica. Silicate Glasses and Melts, 143–183, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/b978-0-444-63708-6.00005-3.

Amran, M., Murali, G., Fediuk, R., Vatin, N., Vasilev, Y., & Abdelgader, H. (2021). Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties. Materials, 14(2), 1–33. doi:10.3390/ma14020332.

Türker, H. T., Balçikanli, M., Durmuş, I. H., Özbay, E., & Erdemir, M. (2016). Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Construction and Building Materials, 104, 169–180. doi:10.1016/j.conbuildmat.2015.12.070.

Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. Journal of the Korean Ceramic Society, 57(5), 530–545. doi:10.1007/s43207-020-00056-7.

Abd Rahman, R. F., Asrah, H., Rizalman, A. N., Mirasa, A. K., & Rajak, M. A. A. (2020). ’Study of Eco-Processed Pozzolan Characterization as Partial Replacement of Cement. Journal of Environmental Treatment Techniques, 8(3), 967-970.

de Borba, W. F., Silvério da Silva, J. L., da Cunha Kemerich, P. D., Boito de Souza, É. E., D’ávila Fernandes, G., & Carvalho, I. R. (2020). Analysis of Chemical Features of a Soil Used as Landfill: Using the X-Ray Fluorescence (XRF) Technique. Water, Air, and Soil Pollution, 231(6), 231. doi:10.1007/s11270-020-04668-x.

Rahgozar, M. A., and Saberian, M. (2015). Physical and Chemical Properties of two Iranian Peat Types. Mires and Peat, 16 (07), 1–17.

Saberian, M., & Rahgozar, M. A. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips in combination with gypsum, lime or cement. Mires and Peat, 18, 1–16. doi:10.19189/MaP.2015.OMB.211.

Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 22(5), 932–938. doi:10.1016/j.conbuildmat.2006.12.001.

Mashri, M. O. M., Megat Johari, M. A., Ahmad, Z. A., & Mijarsh, M. J. A. (2022). Influence of milling process of palm oil fuel ash on the properties of palm oil fuel ash-based alkali activated mortar. Case Studies in Construction Materials, 16, 857. doi:10.1016/j.cscm.2021.e00857.

Tsai, C. J., Huang, R., Lin, W. T., & Wang, H. N. (2014). Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. Materials and Design, 60, 267–273. doi:10.1016/j.matdes.2014.04.002.

Wu, Y. H., Huang, R., Tsai, C. J., & Lin, W. T. (2015). Recycling of sustainable co-firing fly ashes as an alkali activator for GGBS in blended cements. Materials, 8(2), 784–798. doi:10.3390/ma8020784.

Abdullah, H. H., & Shahin, M. A. (2019). Strength Characteristics of Clay Stabilized with Fly-ash Based Geopolymer Incorporating Granulated Slag. Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering. doi:10.11159/icgre19.139.

Andriesse, J. P. (1988). Nature and management of tropical peat soils (No. 59). Food & Agriculture Organization, Rome, Italy.

Wahab, A., Hassan, M., Din, Z. U., & Zaman, Q. U. (2021). Heavy metals concentration in undisturbed peat soil at Pekan District, Pahang, West Malaysia. Maejo International Journal of Energy and Environmental Communication, 3(2), 23-31. doi:10.54279/mijeec.v3i2.245731.

Makinda, J., Kassim K. A., Siong, C. C., Zango, M. U., & Muhammed, A. S. (2020). Geochemical Evaluation of Contaminated Soil for Stabilisation using Microbiologically Induced Calcite Precipitation Method. International Journal of Advanced Science and Technology, 29, 2375–2382.

Soehady Erfen, H. F. W., Asis, J., Abdullah, M., Musta, B., Tahir, S., Pungut, H., & Mohd Husin, M. A. Y. (2017). Geochemical Characterization of Sediments around Nukakatan Valley, Tambunan, Sabah. Geological Behavior, 1(1), 13–15. doi:10.26480/gbr.01.2017.13.15.

MOH Malaysia. (2016). National Standard for Drinking Water Quality. Engineering Services Division Ministry of Health Malaysia. Available online: (accessed on April 2023).

Wu, D., Zhang, Z., Chen, K., & Xia, L. (2022). Experimental Investigation and Mechanism of Fly Ash/Slag-Based Geopolymer-Stabilized Soft Soil. Applied Sciences (Switzerland), 12(15), 7438. doi:10.3390/app12157438.

Khanday, S. A., Hussain, M., & Das, A. K. (2021). Rice Husk Ash–Based Geopolymer Stabilization of Indian Peat: Experimental Investigation. Journal of Materials in Civil Engineering, 33(12), 4021347. doi:10.1061/(asce)mt.1943-5533.0003982.

Latifi, N., Siddiqua, S., & Marto, A. (2019). Stabilization of tropical peat using liquid polymer. Environmental Science and Engineering, 2, 826–833. doi:10.1007/978-981-13-2221-1_94.

Hassan, W. H. W., Rashid, A. S. A., Latifi, N., Horpibulsuk, S., & Borhamdin, S. (2017). Strength and morphological characteristics of organic soil stabilized with magnesium chloride. Quarterly Journal of Engineering Geology and Hydrogeology, 50(4), 454–459. doi:10.1144/qjegh2016-124.

Ahmad Afip, I., Taib, S. N. L., Jusoff, K., & Afip, L. A. (2019). Measurement of Peat Soil Shear Strength Using Wenner Four-Point Probes and Vane Shear Strength Methods. International Journal of Geophysics, 2019, 1–12. doi:10.1155/2019/3909032.

Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Leong, M. (2018). Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58(6), 1358–1370. doi:10.1016/j.sandf.2018.07.005.

Noorvand, H., Ali, A. A. A., Demirboga, R., Noorvand, H., & Farzadnia, N. (2013). Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica. Construction and Building Materials, 48, 1104–1113. doi:10.1016/j.conbuildmat.2013.07.070.

Jaturapitakkul, C., Tangpagasit, J., Songmue, S., & Kiattikomol, K. (2011). Filler effect and pozzolanic reaction of ground palm oil fuel ash. Construction and Building Materials, 25(11), 4287–4293. doi:10.1016/j.conbuildmat.2011.04.073.

Chang, J. J. (2003). A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33(7), 1005–1011. doi:10.1016/S0008-8846(02)01096-7.

Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2000). Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research, 30(9), 1367–1374. doi:10.1016/S0008-8846(00)00349-5.

Wang, S. D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033–1043. doi:10.1016/0008-8846(94)90026-4.

Davidovits, J. (1994). High-alkali cements for 21st century concretes. Special Publication, 144, 383-398. doi:10.14359/4523.

Ram, A. K., & Mohanty, S. (2022). State of the art review on physiochemical and engineering characteristics of fly ash and its applications. International Journal of Coal Science Technology, 9, 1-25. doi:10.1007/s40789-022-00472-6.

McGannon, H. E. (1971). The making, shaping and treating of steel. The AISE Steel Foundation, Pittsburg, United States.

Full Text: PDF

DOI: 10.28991/HIJ-2023-04-02-07


  • There are currently no refbacks.

Copyright (c) 2023 Adriana E. Amaludin, Hidayati Asrah, Habib M. Mohamad, Hassanel Z. bin Amaludin, Nazrein A. bin Amaludin