Thermodynamic Analysis of a Combined Single Effect Vapour Absorption System and tc-CO2 Compression Refrigeration System

Abhishek Verma, S. C. Kaushik, S. K. Tyagi

Abstract


The transcritical CO2 refrigeration system is coupled with the single effect vapour absorption with LiBr-water as a working pair, having the objective of enhancing the performance of the low temperature transcritical refrigeration system while using a natural working pair and reducing the electricity consumption to produce low temperature refrigeration. The high grade waste heat rejected in the gas cooler of the tc-CO2 compression refrigeration system (TCRS) is utilized to run the single effect vapour absorption system (SEVAR) to enhance the energy efficiency of the system. The gas cooler in the transcritical CO2 system has heat energy at a high temperature and pressure, which is utilized to run the vapour absorption system, while the other refrigerant heat exchanger provides subcooling to further enhance the performance. The combined cycle can provide refrigeration temperature at different levels, to use it for different applications. Energetic and exergetic analysis have been done to analyze the combined system to compute the performance parameters and the irreversibilities occurring in different components to further increase the performance. The combined system is optimized for various heat rejection and refrigeration temperatures. The COP of the combined system has been enhanced by 24.88% while the enhancement in exergetic efficiency (ηex) is observed at 10.14%, respectively, over tradition transcritical CO2 compression refrigeration system, with -10°C as an evaporation (TCRS cooling) temperature and the exit temperature of gas cooler T4 being 40°C.

 

Doi: 10.28991/HIJ-2021-02-02-02

Full Text: PDF


Keywords


Exergy; Vapour Absorption; Carbon Dioxide; Waste Heat; Transcritical.

References


Medical and Chemicals Technical Options Committee. (1987). Montreal protocol on substances that deplete the ozone layer. Washington, DC, US Government Printing Office, 26, 128-136.

Fartaj, A., Ting, D. S.-K., & Yang, W. W. (2004). Second law analysis of the transcritical CO2 refrigeration cycle. Energy Conversion and Management, 45(13-14), 2269–2281. doi:10.1016/j.enconman.2003.07.001.

Robinson, D. M., & Groll, E. A. (1998). Efficiencies of transcritical CO2 cycles with and without an expansion turbine: Efficiency of transcritical CO2 cycles with and without an expansion turbine. International Journal of Refrigeration, 21(7), 577–589. doi:10.1016/s0140-7007(98)00024-3.

Ma, Y., Liu, Z., & Tian, H. (2013). A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy, 55, 156–172. doi:10.1016/j.energy.2013.03.030.

Pearson, A. (2005). Carbon dioxide—new uses for an old refrigerant. International Journal of Refrigeration, 28(8), 1140–1148. doi:10.1016/j.ijrefrig.2005.09.005.

Gullo, P., Hafner, A., & Banasiak, K. (2018). Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives. International Journal of Refrigeration, 93, 269–310. doi:10.1016/j.ijrefrig.2018.07.001.

Llopis, R., Nebot-Andrés, L., Sánchez, D., Catalán-Gil, J., & Cabello, R. (2018). Subcooling methods for CO2 refrigeration cycles: A review. International Journal of Refrigeration, 93, 85–107. doi:10.1016/j.ijrefrig.2018.06.010.

Bellos, E., & Tzivanidis, C. (2019). CO2 Transcritical Refrigeration Cycle with Dedicated Subcooling: Mechanical Compression vs. Absorption Chiller. Applied Sciences, 9(8), 1605. doi:10.3390/app9081605.

Liu, X., Fu, R., Wang, Z., Lin, L., Sun, Z., & Li, X. (2019). Thermodynamic analysis of transcritical CO2 refrigeration cycle integrated with thermoelectric subcooler and ejector. Energy Conversion and Management, 188, 354–365. doi:10.1016/j.enconman.2019.02.088.

Astrain, D., Merino, A., Catalán, L., Aranguren, P., Araiz, M., Sánchez, D., … Llopis, R. (2019). Improvements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling system. Applied Thermal Engineering, 155, 110–122. doi:10.1016/j.applthermaleng.2019.03.123.

Mohammadi, S. M. H. (2018). Theoretical investigation on performance improvement of a low-temperature transcritical carbon dioxide compression refrigeration system by means of an absorption chiller after-cooler. Applied Thermal Engineering, 138, 264–279. doi:10.1016/j.applthermaleng.2018.04.006.

Bellos, E., & Tzivanidis, C. (2019). Enhancing the performance of a CO2 refrigeration system with the use of an absorption chiller. International Journal of Refrigeration, 108, 37–52. doi:10.1016/j.ijrefrig.2019.09.009.

Nekså, P. (2002). CO2 heat pump systems. International Journal of Refrigeration, 25(4), 421–427. doi:10.1016/s0140-7007(01)00033-0.

Lo Basso, G., de Santoli, L., Paiolo, R., & Losi, C. (2021). The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model. Renewable Energy, 164, 472–490. doi:10.1016/j.renene.2020.09.098.

Liu, Z., Xie, N., & Yang, S. (2020). Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat. Energy Conversion and Management, 205, 112370. doi:10.1016/j.enconman.2019.112370.

Dincer, I., & Rosen, M. A. (2012). Exergy: energy, environment and sustainable development. Elsevier Science, Netherlands. doi:10.1016/C2010-0-68369-6.

Sarkar, J., Bhattacharyya, S., & Gopal, M. R. (2004). Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 27(8), 830–838. doi:10.1016/j.ijrefrig.2004.03.006.

Pérez-García, V., Rodríguez-Muñoz, J. L., Ramírez-Minguela, J. J., Belman-Flores, J. M., & Méndez-Díaz, S. (2016). Comparative analysis of energy improvements in single transcritical cycle in refrigeration mode. Applied Thermal Engineering, 99, 866–872. doi:10.1016/j.applthermaleng.2016.01.092.

Arora, A., Singh, N. K., Monga, S., & Kumar, O. (2011). Energy and exergy analysis of a combined transcritical CO2 compression refrigeration and single effect H2O-LiBr vapour absorption system. International Journal of Exergy, 9(4), 453. doi:10.1504/ijex.2011.043916.

Arora, A., & Kaushik, S. C. (2009). Theoretical analysis of LiBr/H2O absorption refrigeration systems. International Journal of Energy Research, 33(15), 1321–1340. doi:10.1002/er.1542.

Verma A,Arora A, & Mishra R S (2016). Energy Analysis and Optimization of Flat Pate Collector Area of a Solar Driven Water-Lithium Bromide Half Effect Vapour Absorption Refrigeration System for a given Cooling Load, Proceedings of The International Conference on Recent Advances In Mechanical Engineering, DTU Delhi, India, 521-528.

Herold, K. E., Radermacher, R., & Klein, S. A. (2016). Absorption chillers and heat pumps. CRC Press, Florida, United States.

Pátek, J., & Klomfar, J. (2006). A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500K over full composition range. International Journal of Refrigeration, 29(4), 566–578. doi:10.1016/j.ijrefrig.2005.10.007.

Bejan, A., Tsatsaronis, G., and Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons, New York, United States.


Full Text: PDF

DOI: 10.28991/HIJ-2021-02-02-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Abhishek Verma, S K Tyagi, S C Kaushik