Eco-Friendly Materials for Temporary Use in Architecture and Decorations

Walanrak Poomchalit, Ponlapath Tipboonsri, Boonsong Chongkolnee, Supaaek Pramoonmak, Watthanaphon Cheewawuttipong, Anin Memon

Abstract


This paper introduces the development of ecologically friendly composite materials for decoration and architectural purposes. The composites designed comprised degradable polylactic acid (PLA) and sugarcane bagasse fiber (SC) derived from the bioplastics and sugar industries. The SC reinforcement was examined for impurity treatment and composite formation using hot compression molding at 200 ± 10°C. Two processing methods were studied: (1) random dispersion of SC at 0, 2, 4, 6, 8, and 10 wt%, and (2) single and double-layer SC composite sheets made with 6 wt% SC. The physical and mechanical properties of the PLA-SC composites were evaluated through the morphologies and flexural properties (ASTM C293), thermal conductivity (ASTM C518), and biodegradation assessment (ISO 16929:2021). Results revealed that impurities in SC were effectively removed using an alkaline sodium bicarbonate solution followed by boiling in a 5% vinegar solution. Increasing SC contents reduced the weight, density, and thermal conductivity (k-value) of the PLA-SC composites compared to those representing single and double layers of SC. Additionally, this approach enhanced the flexural properties of the composites. Random dispersion with 10 wt% treated SC yielded the best results among the tested methods, making it the optimal approach for sustainable decoration and architectural materials.

 

Doi: 10.28991/HIJ-2025-06-01-06

Full Text: PDF


Keywords


Green Composites; Ecologically Friendly Products; Natural Fibers Reinforce Plastics; Green Architecture Materials.

References


Gamage, A., Thiviya, P., Liyanapathiranage, A., Wasana, M. L. D., Jayakodi, Y., Bandara, A., Manamperi, A., Dassanayake, R. S., Evon, P., Merah, O., & Madhujith, T. (2024). Polysaccharide-Based Bioplastics: Eco-Friendly and Sustainable Solutions for Packaging. Journal of Composites Science, 8(10), 413. doi:10.3390/jcs8100413.

Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14(21), 4557. doi:10.3390/polym14214557.

Adebowale, S. (2024). Green architecture: Embracing bioplastics for sustainable design. Samjades Building Construction (NIG LTD), Lagos, Nigeria. Available online: https://sameerabuildingconstruction.com/green-architecture-embracing-bioplastics-for-sustainable-design/#google_vignette (accessed on February 2025).

Bioplastics Magazine. (2021). Bioplastics in home construction and design. Bioplastics Magazine, Mönchengladbach Germany. Available online: https://www.bioplasticsmagazine.com/en/news/meldungen/20210521-Bioplastics-In-Home-Construction.php (accessed on February 2025).

Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8(1), 87. doi:10.1186/s40643-021-00440-z.

Oliveira, P. R., Ribeiro Filho, S. L. M., Panzera, T. H., Christoforo, A. L., Durão, L. M. P., & Scarpa, F. (2021). Hybrid polymer composites made of sugarcane bagasse fibres and disposed rubber particles. Polymers and Polymer Composites, 29(9), S1280–S1293. doi:10.1177/0967391120943459.

Durão, L. M. P., Matos, J. E., Alves, J., Filho, S. M. R., Panzera, T. H., & Scarpa, F. (2023). Experimental Study of Drilling Damage Outcomes in Hybrid Composites with Waste Micro-Inclusions. Materials, 16(23), 7325. doi:10.3390/ma16237325.

Rezende, C. A., De Lima, M., Maziero, P., Deazevedo, E., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4, 54. doi:10.1186/1754-6834-4-54.

Ferreira, D. P., Cruz, J., & Fangueiro, R. (2019). Surface modification of natural fibers in polymer composites. Green Composites for Automotive Applications, 3-41. doi:10.1016/B978-0-08-102177-4.00001-X.

Jannah, M., Mariatti, M., Abu Bakar, A., & Abdul Khalil, H. P. S. (2009). Effect of chemical surface modifications on the properties of woven banana-reinforced unsaturated polyester composites. Journal of Reinforced Plastics and Composites, 28(12), 1519–1532. doi:10.1177/0731684408090366.

Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 107(1), 12045. doi:10.1088/1757-899X/107/1/012045.

Sallehuddin, N. J., & Ismail, H. (2020). Treatment’s Effect on Mechanical Properties of Kenaf Bast/Natural Rubber Latex Foam. BioResources, 15(4), 9507–9522. doi:10.15376/biores.15.4.9507-9522.

Ma, Y., Wang, C., & Chu, F. (2017). Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites. BioResources, 12(3), 4722–4736. doi:10.15376/biores.12.3.4722-4736.

Njom, A. E., Mewoli, A., Ndengue, M. J., Ebanda, F. B., Nitidem, A. D., Otiti, S. B., ... & Ateba, A. (2022). Hybrid composite based on natural rubber reinforced with short fibers of the triumfetta cordifolia/saccharum officinarum L.: performance evaluation. Journal of Minerals and Materials Characterization and Engineering, 10(5), 385-399. doi:10.4236/jmmce.2022.105027.

Zimmer, A., & Bachmann, S. A. L. (2023). Challenges for recycling medium-density fiberboard (MDF). Results in Engineering, 19, 101277. doi:10.1007/s00107-018-1326-8.

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. doi:10.1016/j.compositesb.2012.04.053.

Thakur, V. K., & Thakur, M. K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117. doi:10.1016/j.carbpol.2014.03.039.

Xue, Y., Lofland, S., & Hu, X. (2019). Thermal conductivity of protein-based materials: A review. Polymers, 11(3), 565–576. doi:10.3390/polym11030456.

Hiziroglu, S. (2010). Oriented strand board as a building material. Oklahoma Cooperative Extension Service, Oklahoma, United States. Available online: https://openresearch.okstate.edu/server/api/core/bitstreams/05f0c6ff-56a3-48b5-8e76-7d7c186372c6/content (accessed on February 2025).

Bartos, A., Kócs, J., Anggono, J., Móczó, J., & Pukánszky, B. (2021). Effect of fiber attrition, particle characteristics and interfacial adhesion on the properties of PP/sugarcane bagasse fiber composites. Polymer Testing, 98, 106273. doi:10.1016/j.polymertesting.2021.107189.

Maharana, S. M., Samal, P., Dehury, J., & Mohanty, P. P. (2020). Effect of fiber content and orientation on mechanical properties of epoxy composites reinforced with jute and Kevlar. Materials Today: Proceedings, 26, 273-277. doi:10.1016/j.matpr.2019.11.239.

Ramachandran, A., Mavinkere Rangappa, S., Kushvaha, V., Khan, A., Seingchin, S., & Dhakal, H. N. (2022). Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review. Macromolecular rapid communications, 43(17), 2100862. doi:10.1002/marc.202100862.

Wang, C., Li, K. Z., Li, H. J., Jiao, G. S., Lu, J., & Hou, D. S. (2008). Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Materials Science and Engineering: A, 487(1-2), 52-57. doi:10.1016/j.msea.2007.09.073.

Osugi, R., Takagi, H., Liu, K., & Gennai, Y. (2009). Thermal conductivity behavior of natural fiber-reinforced composites. Proceedings of the Asian pacific conference for materials and mechanics, Yokohama, Japan.

Nirmal Kumar, K., Dinesh Babu, P., Surakasi, R., Kumar, P. M., Ashokkumar, P., Khan, R., ... & Gebreyohannes, D. T. (2022). Mechanical and thermal properties of bamboo fiber–reinforced PLA polymer composites: a critical study. International Journal of Polymer Science, 2022(1), 1332157. doi:10.1155/2022/1332157.

Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661–4667. doi:10.1016/j.biortech.2007.09.043.


Full Text: PDF

DOI: 10.28991/HIJ-2025-06-01-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Anin Memon, Walanrak Poomchalit, Ponlapath Tipboonsri, Boonsong Chongkolnee, Supaaek Pramoonmak, Watthanaphon Cheewawuttipong