Performance Assessment of Optimized Link State Routing Protocol on Vehicular Ad Hoc Network Simulation

Yap Yu Xian, Sumendra Yogarayan, Siti Fatimah Abdul Razak, Md. Shohel Sayeed, Mohd. Fikri Azli Abdullah, Subarmaniam Kannan, Afizan Azman

Abstract


Vehicular Ad-hoc Networks (VANETs) are dedicated forms of wireless communication networks designed to handle the challenges of vehicular environments, including high mobility, varying traffic densities, and constantly changing topologies. These factors necessitate the development and evaluation of routing protocols to ensure reliable data communication between vehicles. This study evaluates the performance of the Optimized Link State Routing (OLSR) protocol within Vehicular Ad-hoc Networks (VANETs), focusing on its capability to handle different traffic densities and dynamic environments. Reliable data communication in VANETs is critical due to the high mobility and constantly changing topologies, especially in urban and highway settings. Using NS-3 for network simulation and Simulation of Urban MObility (SUMO) for realistic vehicular mobility modelling, we conducted a series of simulations to assess OLSR’s performance in low-density and high-density scenarios across highway and urban environments. Key performance metrics, including packet delivery ratio (PDR), end-to-end delay (E2ED) and throughput were analyzed to capture OLSR’s strengths and weaknesses in each setting. The analysis showed that OLSR excels in low-density highway scenarios, achieving a PDR of 100% and low E2ED. However, in high-density urban settings, the protocol encounters performance challenges, with a reduced PDR of 81.40% and a high E2ED of 85.52 seconds, indicating delays in data transmission. These findings emphasize the limitations of OLSR in dense urban environments, highlighting the necessity for adaptive routing protocols that can improve performance in complex, high-density vehicular networks.

 

Doi: 10.28991/HIJ-2025-06-01-019

Full Text: PDF


Keywords


OLSR; VANET; QoS; Highway; Urban; NS-3; SUMO.

References


Farsimadan, E., Palmieri, F., Moradi, L., Conte, D., & Paternoster, B. (2021). Vehicle-to-Everything (V2X) Communication Scenarios for Vehicular Ad-hoc Networking (VANET): An Overview. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021, Lecture Notes in Computer Science, 12956. Springer, Cham, Switzerland. doi:10.1007/978-3-030-87010-2_2.

Sohail, M., Latif, Z., Javed, S., Biswas, S., Ajmal, S., Iqbal, U., Raza, M., & Khan, A. U. (2023). Routing protocols in Vehicular Adhoc Networks (VANETs): A comprehensive survey. Internet of Things (Netherlands), 23, 100837. doi:10.1016/j.iot.2023.100837.

Mahi, M. J. N., Chaki, S., Ahmed, S., Biswas, M., Kaiser, M. S., Islam, M. S., Sookhak, M., Barros, A., & Whaiduzzaman, M. (2022). A Review on VANET Research: Perspective of Recent Emerging Technologies. IEEE Access, 10, 65760–65783. doi:10.1109/ACCESS.2022.3183605.

Rashid, S. A., Audah, L., & Hamdi, M. M. (2022). Intelligent Transportation Systems (ITSs) in VANET and MANET. Biologically Inspired Techniques in Many Criteria Decision Making. Smart Innovation, Systems and Technologies, 271, Springer, Singapore. doi:10.1007/978-981-16-8739-6_59.

Rashid, S. A., Audah, L., Hamdi, M. M., Abood, M. S., & Alani, S. (2020). Reliable and efficient data dissemination scheme in VANET: A review. International Journal of Electrical and Computer Engineering, 10(6), 6423–6434. doi:10.11591/IJECE.V10I6.PP6423-6434.

Wheeb, A. H., Nordin, R., Samah, A. A., Alsharif, M. H., & Khan, M. A. (2022). Topology-Based Routing Protocols and Mobility Models for Flying Ad Hoc Networks: A Contemporary Review and Future Research Directions. Drones, 6(1), 9. doi:10.3390/drones6010009.

Hamdi, M. M., Audah, L., Rashid, S. A., & Al-Shareeda, M. A. (2020). Techniques of early incident detection and traffic monitoring centre in VANETs: A review. Journal of Communications, 15(12), 896–904. doi:10.12720/jcm.15.12.896-904.

Hussein, N. H., Yaw, C. T., Koh, S. P., Tiong, S. K., & Chong, K. H. (2022). A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions. IEEE Access, 10, 86127–86180. doi:10.1109/ACCESS.2022.3198656.

Quy, V. K., Nam, V. H., Linh, D. M., Ban, N. T., & Han, N. D. (2022). Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey. Wireless Personal Communications, 122(3), 2791–2815. doi:10.1007/s11277-021-09030-w.

Karabulut, M. A., Shah, A. F. M. S., Ilhan, H., Pathan, A. S. K., & Atiquzzaman, M. (2023). Inspecting VANET with Various Critical Aspects – A Systematic Review. Ad Hoc Networks, 150. doi:10.1016/j.adhoc.2023.103281.

Barki, O., Guennoun, Z., & Addaim, A. (2020). Improving the selection of MPRs in OLSR protocol: A survey of methods and techniques. International Journal of Electrical and Computer Engineering, 10(1), 288–295. doi:10.11591/ijece.v10i1.pp288-295.

Gupta, S. (2020). Performance Evaluation of Routing Protocols in Vehicular Ad-Hoc Networks (VANETs): A Comparative Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(1), 847–856. doi:10.17762/turcomat.v11i1.13567.

Abdeen, M. A. R., Beg, A., Mostafa, S. M., Abdulghaffar, A., Sheltami, T. R., & Yasar, A. (2022). Performance Evaluation of VANET Routing Protocols in Madinah City. Electronics (Switzerland), 11(5), 777. doi:10.3390/electronics11050777.

Kaur, R., Kaur, N., & Singh, S. (2019). Analysis of optimization parameters of OLSR protocol for VANETs. International Journal of Innovative Technology and Exploring Engineering, 8(8), 1256–1261.

Srivastava, A., Verma, S., Kavita, Jhanjhi, N. Z., Talib, M. N., & Malhotra, A. (2020). Analysis of quality of service in VANET. IOP Conference Series: Materials Science and Engineering, 993(1), 12061. doi:10.1088/1757-899X/993/1/012061.

Zhao, J., Wang, Y., Lu, H. L., Li, Z., & Ma, X. (2021). Interference-Based QoS and Capacity Analysis of VANETs for Safety Applications. IEEE Transactions on Vehicular Technology, 70(3), 2448–2464. doi:10.1109/TVT.2021.3059740.

Nisar, K., Mu’azu, A. A., Lawal, I. A., Khan, S., & Memon, S. (2020). Reliable Priority Based QoS Real-Time Traffic Routing in VANET: Open Issues & Parameter. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), 1–6. doi:10.1109/aict50176.2020.9368689.

Aji Pratama, R., Rosselina, L., Sulistyowati, D., Fitri Sari, R., & Harwahyu, R. (2020). Performance Evaluation on VANET Routing Protocols in the Way Road of Central Jakarta using NS-3 and SUMO. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 280–285. doi:10.1109/iSemantic50169.2020.9234202.

Deshpande, S., Pagare, A. S., Vaidya, R., & Bhate, M. (2021). To simulate AODV, DSR, GRP and OLSR routing protocols of VANET and study the performance indicators using Opnet Modeler 14.5. Turkish Journal of Computer and Mathematics Education, 12(12), 3613-3617.

Shobana, S., & Raj, J. S. (2022). ISFF Based Optimal Route Selection and QoS Enhancement in VANETs. 2022 International Conference on Sustainable Computing and Data Communication Systems, 689–694. doi:10.1109/ICSCDS53736.2022.9760786.

Elaryh Makki Dafalla, M., Mokhtar, R. A., Saeed, R. A., Alhumyani, H., Abdel-Khalek, S., & Khayyat, M. (2022). An optimized link state routing protocol for real-time application over Vehicular Ad-hoc Network. Alexandria Engineering Journal, 61(6), 4541–4556. doi:10.1016/j.aej.2021.10.013.

Alrfaaei, M. H., & Akki, A. S. (2022). Vehicle traffic density impact on V2V link lifetime and channel capacity over VANET in Highway: A comparison study using OLSR and ACRP routing protocols. 2022 International Conference on Engineering & MIS (ICEMIS), 1–6. doi:10.1109/icemis56295.2022.9914224.

Laanaoui, M., & Raghay, S. (2022). Enhancing OLSR Protocol by an Advanced Greedy Forwarding Mechanism for VANET in Smart Cities. Smart Cities, 5(2), 650–667. doi:10.3390/smartcities5020034.

Hota, L., Nayak, B. P., Kumar, A., Sahoo, B., & Ali, G. G. M. N. (2022). A Performance Analysis of VANETs Propagation Models and Routing Protocols. Sustainability (Switzerland), 14(3), 1379. doi:10.3390/su14031379.

Tareef, A., Btoush, A., & Alhabashneh, O. (2022). Comparison and Classification of VANET Routing Protocols. 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA), 1–6. doi:10.1109/etcea57049.2022.10009853.

Kachooei, M. A., Hendessi, F., Ghahfarokhi, B. S., & Nozari, M. (2022). An OLSR-based Geocast Routing Protocol for Vehicular Ad Hoc Networks. Peer-to-Peer Networking and Applications, 15(1), 246–266. doi:10.1007/s12083-021-01246-8.

Ahmed, W. K., Warip, M. N. bin M., Abduljabbar, W. K., & Elshaikh, M. (2022). Ws-Olsr: Multipoint Relay Selection in Vanet Networks Using a Wingsuit Flying Search Algorithm. International Journal of Computer Networks and Communications, 14(6), 37–49. doi:10.5121/ijcnc.2022.14603.

Yang, H., Pu, C., Wu, J., Wu, Y., & Xia, Y. (2023). Enhancing OLSR protocol in VANETs with multi-objective particle swarm optimization. Physica A: Statistical Mechanics and Its Applications, 614, 128570. doi:10.1016/j.physa.2023.128570.

Suvarna, S., K, K. P., & Bappalige, N. N. (2023). Performance Analysis of Mobile Ad Hoc Routing Protocols in Vehicular Ad Hoc Networks using NS3. SSRN Electronic Journal, 5(1), 1-10. doi:10.2139/ssrn.4411480.

Borah, R. J., & Ganga, D. (2024). Analyzing VANET Performance in Urban Environments: A Comparative Analysis of Propagation Models with OLSR-Based Vehicular Networks through SUMO and NS3. 2024 2nd World Conference on Communication &Amp; Computing (WCONF), 1–5. doi:10.1109/wconf61366.2024.10691958.

Marinov, T. (2024). Performance Comparison and Analysis of AODV and MTP Routing Protocols in VANET for Urban Scenario. 2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), 1–4. doi:10.1109/icest62335.2024.10639808.

Varsha, & Jhariya, D. K. (2024). Routing Protocols Characterization in Real-World Vehicular Network. 2024 First International Conference on Electronics, Communication and Signal Processing (ICECSP), 1–4. doi:10.1109/icecsp61809.2024.10698136.


Full Text: PDF

DOI: 10.28991/HIJ-2025-06-01-019

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yap Yu Xian, Sumendra Yogarayan, Siti Fatimah Abdul Razak, Md. Shohel Sayeed, Mohd. Fikri Azli Abdullah, Subarmaniam Kannan, Afizan Azman