A Method for Assessing Urban Industrial Ecological Efficiency Using SBM-GML Model with Tax Reduction

Yuchen Guo, Jianwei Guo

Abstract


The industrial development of cities promotes social and economic development, but it also affects cities' ecological environments. To balance the relationship between the two, the country introduces corresponding tax reduction policies as an effective means of regulation. Therefore, to explore tax and fee reduction policies' specific impact on urban industrial ecological efficiency, the proposed text clustering model was first used in this experiment to cluster the tax and fee reduction policies issued by the government. Subsequently, the Slack-Based Measure-Global Malmquist Lunberger was constructed to measure urban industrial development's ecological efficiency. These experiments confirmed that policy text clustering models had different clustering accuracy on different datasets, with clustering accuracy reaching up to 80.95%, 87.13%, and 94.08% at iterations of 200, 500, and 1000. The regression coefficients for the main variables obtained from the clustering policy, including overall tax reduction and fee reduction, circulation tax reduction, income tax reduction, social expense reduction, and technological innovation tax reduction, were 0.117, 0.105, 0.269, 0.112, and 0.115, respectively. This indicated that these tax and fee reduction measures affected industrial ecological efficiency positively. Therefore, the proposed method can effectively cluster policy texts and measure the industrial ecological efficiency of cities, which has practical feasibility. This provides an effective path for promoting industry and the ecological environment's balanced development.

 

Doi: 10.28991/HIJ-2024-05-04-02

Full Text: PDF


Keywords


Tax Reduction Policy; LDA Text Clustering; SBM-GML; Industrial Ecological Efficiency; Measure.

References


Köppl, A., & Schratzenstaller, M. (2023). Carbon taxation: A review of the empirical literature. Journal of Economic Surveys, 37(4), 1353–1388. doi:10.1111/joes.12531.

Guo, B., Wang, Y., Zhou, H., & Hu, F. (2023). Can environmental tax reform promote carbon abatement of resource-based cities? Evidence from a quasi-natural experiment in China. Environmental Science and Pollution Research, 30(55), 117037–117049. doi:10.1007/s11356-022-23669-3.

YAN, X., & TU, J. (2021). The spatio-temporal evolution and driving factors of eco-efficiency of resource-based cities in the Yellow River Basin. Journal of Natural Resources, 36(1), 223. doi:10.31497/zrzyxb.20210115.

Usman, A., Quan-Lin, L., Abdullah, A. M., Shakib, M., & Wasim, I. (2021). Correction to: Nexus between agro-ecological efficiency and carbon emission transfer: evidence from China. Environmental Science and Pollution Research, 28(32), 44581-44581. doi:10.1007/s11356-021-14461-w.

George, L., & Sumathy, P. (2023). An integrated clustering and BERT framework for improved topic modeling. International Journal of Information Technology (Singapore), 15(4), 2187–2195. doi:10.1007/s41870-023-01268-w.

Vaičiukynas, E., Andrijauskienė, M., Danėnas, P., & Benetytė, R. (2023). Socio-eco-efficiency of high-tech companies: a cross-sector and cross-regional study. Environment, Development and Sustainability, 25(11), 12761–12790. doi:10.1007/s10668-022-02589-9.

Xu, W., Xu, Z., & Liu, C. (2021). Coupling analysis of land intensive use efficiency and ecological well-being performance of cities in the Yellow River Basin. Journal of Natural Resources, 36(1), 114. doi:10.31497/zrzyxb.20210108.

Ke, H., Dai, S., & Yu, H. (2022). Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018. Environment, Development and Sustainability, 24(2), 2841–2860. doi:10.1007/s10668-021-01556-0.

Gill, A. R., Riaz, R., & Ali, M. (2023). The asymmetric impact of financial development on ecological footprint in Pakistan. Environmental Science and Pollution Research, 30(11), 30755–30765. doi:10.1007/s11356-022-24384-9.

Zhang, M., Zhang, P., & Li, H. (2021). Characteristics and evaluation methods of economic transformation performance of resource-based cities: An empirical study of Northeast China. Journal of Natural Resources, 36(8), 2051. doi:10.31497/zrzyxb.20210811.

Yin, B., & Yuan, C. H. (2022). Detecting latent topics and trends in blended learning using LDA topic modeling. Education and Information Technologies, 27(9), 12689–12712. doi:10.1007/s10639-022-11118-0.

Shao, D., Li, C., Huang, C., Xiang, Y., & Yu, Z. (2022). A news classification applied with new text representation based on the improved LDA. Multimedia Tools and Applications, 81(15), 21521–21545. doi:10.1007/s11042-022-12713-6.

Nanda, G., A. Douglas, K., R. Waller, D., E. Merzdorf, H., & Goldwasser, D. (2021). Analyzing Large Collections of Open-Ended Feedback from MOOC Learners Using LDA Topic Modeling and Qualitative Analysis. IEEE Transactions on Learning Technologies, 14(2), 146–160. doi:10.1109/TLT.2021.3064798.

Weisser, C., Gerloff, C., Thielmann, A., Python, A., Reuter, A., Kneib, T., & Säfken, B. (2023). Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data. Computational Statistics, 38(2), 647–674. doi:10.1007/s00180-022-01246-z.

Xie, R., Chu, S. K. W., Chiu, D. K. W., & Wang, Y. (2021). Exploring Public Response to COVID-19 on Weibo with LDA Topic Modeling and Sentiment Analysis. Data and Information Management, 5(1), 86–99. doi:10.2478/dim-2020-0023.

Mehta, V., Bawa, S., & Singh, J. (2021). WEClustering: word embeddings based text-clustering technique for large datasets. Complex and Intelligent Systems, 7(6), 3211–3224. doi:10.1007/s40747-021-00512-9.

Belwal, R. C., Rai, S., & Gupta, A. (2023). Extractive text summarization using clustering-based topic modeling. Soft Computing, 27(7), 3965–3982. doi:10.1007/s00500-022-07534-6.

Saravanan, S., Karthigaivel, R., & Magudeeswaran, V. (2021). A brain tumor image segmentation technique in image processing using ICA-LDA algorithm with ARHE model. Journal of Ambient Intelligence and Humanized Computing, 12(5), 4727–4735. doi:10.1007/s12652-020-01875-6.

Sharma, S. K., Vijayakumar, K., Kadam, V. J., & Williamson, S. (2022). Breast cancer prediction from microRNA profiling using random subspace ensemble of LDA classifiers via Bayesian optimization. Multimedia Tools and Applications, 81(29), 41785–41805. doi:10.1007/s11042-021-11653-x.

Thielmann, A., Weisser, C., Krenz, A., & Säfken, B. (2023). Unsupervised document classification integrating web scraping, one-class SVM and LDA topic modelling. Journal of Applied Statistics, 50(3), 574–591. doi:10.1080/02664763.2021.1919063.

van Ewijk, S., & Hoekman, P. (2021). Emission reduction potentials for academic conference travel. Journal of Industrial Ecology, 25(3), 778–788. doi:10.1111/jiec.13079.

Dong, F., & Zheng, L. (2022). The impact of market-incentive environmental regulation on the development of the new energy vehicle industry: a quasi-natural experiment based on China’s dual-credit policy. Environmental Science and Pollution Research, 29(4), 5863–5880. doi:10.1007/s11356-021-16036-1.

Tan, L., Wu, X., Guo, J., & Santibanez-Gonzalez, E. D. R. (2022). Assessing the Impacts of COVID-19 on the Industrial Sectors and Economy of China. Risk Analysis, 42(1), 21–39. doi:10.1111/risa.13805.

Liu, J., Gong, E., & Wang, X. (2022). Economic benefits of construction waste recycling enterprises under tax incentive policies. Environmental Science and Pollution Research, 29(9), 12574–12588. doi:10.1007/s11356-021-13831-8.

Qian, H., Xu, S., Cao, J., Ren, F., Wei, W., Meng, J., & Wu, L. (2021). Air pollution reduction and climate co-benefits in China’s industries. Nature Sustainability, 4(5), 417–425. doi:10.1038/s41893-020-00669-0.

Phrommarat, B., & Oonkasem, P. (2021). Sustainable pineapple farm planning based on eco-efficiency and income risk: A comparison of conventional and integrated farming systems. Applied Ecology and Environmental Research, 19(4), 2701–2717. doi:10.15666/aeer/1904_27012717.

Guo, L., Cao, Y., Su, Q., Liu, T., & Tseng, M. L. (2023). Identifying the evolution of ecological poverty alleviation efficiency and its influencing factors: evidence from counties in Northeast China. Environmental Science and Pollution Research, 30(23), 64078–64093. doi:10.1007/s11356-023-26783-y.

Li, J., Chen, L., Chen, Y., & He, J. (2022). Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China. Managerial and Decision Economics, 43(3), 616–629. doi:10.1002/mde.3406.

Zhao, H., Liu, G., You, S., Camargo, F. V. A., Zavelani-Rossi, M., Wang, X., Sun, C., Liu, B., Zhang, Y., Han, G., Vomiero, A., & Gong, X. (2021). Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy and Environmental Science, 14(1), 396–406. doi:10.1039/d0ee02235g.

Oh, C. (2023). Exploring the Way to Harmonize Sustainable Development Assessment Methods in Article 6.2 Cooperative Approaches of the Paris Agreement. Green and Low-Carbon Economy, 1(3), 121–129. doi:10.47852/bonviewglce32021065.

Wang, Y., Liu, Y., Feng, W., & Zeng, S. (2023). Waste Haven Transfer and Poverty-Environment Trap: Evidence from EU. Green and Low-Carbon Economy, 1(1), 41–49. doi:10.47852/bonviewglce3202668.

Lee, C. C., & Du, L. (2024). Can green finance improve eco-efficiency? New Insights from China. Environmental Science and Pollution Research, 31(28), 40976–40994. doi:10.1007/s11356-024-33832-7.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yuchen Guo, Jianwei Guo