A Smart IoT Urban Flood Monitoring System Using a High-Performance Pressure Sensor with LoRaWAN

Matthew Christian L. Te, Joaquin Antonio T. Bautista, Shaquille Michael Edward V. Dimacali, Angelo Victor M. Lood, Marina Graciella M. Pangan, Alvin Y. Chua

Abstract


The Philippines faces frequent flooding and significant loss of life and property. Current flood monitoring systems (FMS) are outdated, causing delays in information distribution and mitigation efforts. Therefore, this study presents the development of a pressure sensor-based system with LoRaWAN capability for continuous, remote flood detection. The FMS PVC housing design was iterated upon by changing lengths, diameters, and mounting systems. Moreover, each of the parts was modeled, simulated, and tested in ANSYS and evaluated with simulated real-world physical and environmental conditions. The FMS is equipped with LoRaWAN transmission and solar charging, which transmits data to The Things Network, where it is then visualized in Packetview. The resulting FMS design and mounting were robust and were able to withstand flooding conditions. The battery and solar panel are also sufficient in continuously powering the FMS. Moreover, the FMS was also able to withstand various tests with minimal sensor errors. The FMS holds the potential to enhance flood monitoring in the Philippines, offering localized, cost-effective, and near-real-time solutions for better disaster preparedness and response strategies. The FMS utilized the accurate theory equation that resulted in a flood height error as low as 1.12% in testing and 1.81% in rain. Furthermore, it is resistant to external disturbances as the system takes 0.5 seconds to stabilize, while continuous disturbances resulted in errors ranging from 0% to 3%.

 

Doi: 10.28991/HIJ-2024-05-04-04

Full Text: PDF


Keywords


Flood Monitoring System (FMS); Pressure Sensor; LoRaWAN; Internet of Things (IoT); Solar Powered.

References


World Bank Group (2024). Philippines - Vulnerability. Climate Change Knowledge Portal. The World Bank Group, Washington, D.C., United States. Available online: https://climateknowledgeportal.worldbank.org/country/philippines/vulnerability (accessed on November 2024).

NOAH. (2024). Nationwide Operational Assessment of Hazards. Project NOAH, Quezon City, Philippines. Available online: https://noah.up.edu.ph/ (accessed on November 2024).

Lagmay, A. M., Mendoza, J., Cipriano, F., Delmendo, P. A., Lacsamana, M. N., Moises, M. A., ... & Tingin, N. E. (2017). Street floods in Metro Manila and possible solutions. Journal of Environmental Sciences, 59, 39-47. doi:10.1016/j.jes.2017.03.004.

Hassan, W. H., Jidin, A. Z., Aziz, S. A. C., & Rahim, N. (2019). Flood disaster indicator of water level monitoring system. International Journal of Electrical and Computer Engineering, 9(3), 1694–1699. doi:10.11591/ijece.v9i3.pp1694-1699.

Rani, D. S., Jayalakshmi, G. N., & Baligar, V. P. (2020). Low Cost IoT based Flood Monitoring System Using Machine Learning and Neural Networks: Flood Alerting and Rainfall Prediction. 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, 261–267. doi:10.1109/ICIMIA48430.2020.9074928.

Retamar, A. E., Guba, G., Lopez, G. V., Paler, H. B., Javier, J., Garcia, F. C. C., Badong-Carlos, J., Capito, J., Mosquera, I. C., De Paz, M., & Yabut, J. J. (2017). HydroMet: Deployment of a large-scale nationwide hydrometeorological sensor network for flood warning and monitoring. GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, 2017-January, 1–10. doi:10.1109/GHTC.2017.8239323.

Dswilan, S., Harmadi, & Marzuki. (2021). Flood monitoring system using ultrasonic sensor SN-SR04T and SIM 900A. Journal of Physics: Conference Series, 1876(1), 12003. doi:10.1088/1742-6596/1876/1/012003.

Natividad, J. G., & Mendez, J. M. (2018). Flood Monitoring and Early Warning System Using Ultrasonic Sensor. IOP Conference Series: Materials Science and Engineering, 325(1), 12020. doi:10.1088/1757-899X/325/1/012020.

Binti Zahir, S., Ehkan, P., Sabapathy, T., Jusoh, M., Nasrun Osman, M., Najib Yasin, M., Abdul Wahab, Y., Hambali, N. A. M., Ali, N., Bakhit, A. S., Husin, F., Kamil, M. K. M., & Jamaludin, R. (2019). Smart IoT Flood Monitoring System. Journal of Physics: Conference Series, 1339(1), 12043. doi:10.1088/1742-6596/1339/1/012043.

Yuliandoko, H., Subono, Wardhany, V. A., Pramono, S. H., & Siwindarto, P. (2018). Design of flood warning system based IoT and water characteristics. Telkomnika (Telecommunication Computing Electronics and Control), 16(5), 2101–2110. doi:10.12928/TELKOMNIKA.v16i5.7636.

Yoeseph, N. M., Purnomo, F. A., Hartono, R., & Nuryani. (2022). Lora-based IoT sensor node for Real-time Flood Early Warning System. IOP Conference Series: Earth and Environmental Science, 986(1), 12060. doi:10.1088/1755-1315/986/1/012060.

Zakaria, M. I., Jabbar, W. A., & Sulaiman, N. (2023). Development of a smart sensing unit for LoRaWAN-based IoT flood monitoring and warning system in catchment areas. Internet of Things and Cyber-Physical Systems, 3, 249–261. doi:10.1016/j.iotcps.2023.04.005.

Rahayu, F., Zuchriadi, A., Fauzi, A. F., & Dewantara, A. B. (2022). Prototype Flood Detection Water Level Monitoring IoT Web Based With Ultrasonic Sensor HC-SR04. Jurnal Mantik, 6(36), 2006–2014.

Ming Ray, K., & Mustafa, F. (2023). Solar Powered IoT Flood Detector. Progress in Engineering Application and Technology, 4(2), 332–344.

Tolentino, L. K. S., Baron, R. E., Blacer, C. A. C., Aliswag, J. M. D., De Guzman, D. C. E., Fronda, J. B. A., Valeriano, R. C., Quijano, J. F. C., Padilla, M. V. C., Madrigal, G. A. M., Valenzuela, I., & Fernandez, E. (2023). Real Time Flood Detection, Alarm and Monitoring System Using Image Processing and Multiple Linear Regression. SSRN Electronic Journal, 7(1), 1-21. doi:10.2139/ssrn.4319789.

Lo, S. W., Wu, J. H., Lin, F. P., & Hsu, C. H. (2015). Visual sensing for urban flood monitoring. Sensors (Switzerland), 15(8), 20006. doi:10.3390/s150820006.

Hashemi-Beni, L., Puthenparampil, M., & Jamali, A. (2024). A low-cost IoT-based deep learning method of water gauge measurement for flood monitoring. Geomatics, Natural Hazards and Risk, 15(1), 2364777. doi:10.1080/19475705.2024.2364777.

Bande, S., & Shete, V. V. (2018). Smart flood disaster prediction system using IoT & neural networks. Proceedings of the 2017 International Conference on Smart Technology for Smart Nation, SmartTechCon 2017, 189–194. doi:10.1109/SmartTechCon.2017.8358367.

Sandhya, T., Shalini, M., Kumar, C., Vaishnavi, Priyanka, Rao, D. S. N. M., & Singh, D. (2023). Lora Technology for Flood Monitoring and Warn System. E3S Web of Conferences, 430. doi:10.1051/e3sconf/202343001168.

Saparudin, F. A., Halim, M. S., Amani Ibrahim, N. S., & Baharom, M. F. (2024). Real-Time Flood Monitoring Using Mobile LoRaWAN IoT Gateway: A Case Study of the Muar River Catchment. ICoCET 2024 - 2024 IEEE 1st International Conference on Communication Engineering and Emerging Technologies, 1–4. doi:10.1109/ICoCET63343.2024.10730107.

Gunanandhini, S., Livyashree, M., Maheshwaran, R. R., Palanisamy, K. S., & Niranjan Kumar, V. (2024). Forecasting and Real Time Flood Monitoring System using IoT. 10th International Conference on Advanced Computing and Communication Systems, ICACCS 2024, 1228–1233. doi:10.1109/ICACCS60874.2024.10716883.

Garcia, F. C. C., Retamar, A. E., & Javier, J. C. (2016). A real time urban flood monitoring system for metro Manila. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2016-January, 1–5. doi:10.1109/TENCON.2015.7372990.

Azid, S., Sharma, B., Raghuwaiya, K., Chand, A., Prasad, S., & Jacquier, A. (2015). SMS based flood monitoring and early warning system. ARPN Journal of Engineering and Applied Sciences, 10(15), 6387–6391.

Dublin, A. C., Arce, M., Ortiz, E., Wong, L. M., Villaruel, K. P., Arante, H. R., Co, D., Chua, A., Sybingco, E., & Roque, M. A. (2024). A Novel Cost-Effective Pressure Sensor Based Flood Monitoring System with IoT. ASEAN Engineering Journal, 14(3), 53–61. doi:10.11113/aej.V14.20668.

Arce, M., Ortiz, E., Villaruel, K., & Wong, L. Development of an Urban Flood Monitoring System with Visualization using IoT Connectivity. Undergraduate Thesis, De La Salle University Manila, Manila, Philippines.

Lee, Y. J., Hwang, J. Y., Park, J., Jung, H. G., & Suhr, J. K. (2024). Deep Neural Network-Based Flood Monitoring System Fusing RGB and LWIR Cameras for Embedded IoT Edge Devices. Remote Sensing, 16(13), 2358. doi:10.3390/rs16132358.

William, P., Oyebode, O. J., Ramu, G., Lakhanpal, S., Gupta, K. K., & Al-Jawahry, H. M. (2023). Framework for IOT Based Real-Time Monitoring System of Rainfall Water Level for Flood Prediction Using LSTM Network. Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, 1321–1326. doi:10.1109/ICPCSN58827.2023.00222.

Prakash, C., Barthwal, A., & Acharya, D. (2023). An IoT-based system for monitoring and forecasting flash floods in real-time. Journal of Earth System Science, 132(4), 159. doi:10.1007/s12040-023-02172-4.

Meteostat (2024). Air Pressure: Manila, Philippines. Meteostat. Available online: https://meteostat.net/en/station/98425 (accessed on November 2024).


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Matthew Christian L. Te, Joaquin Antonio T. Bautista, Shaquille Michael Edward V. Dimacali, Angelo Victor M. Lood, Marina Graciella M. Pangan, Alvin Y. Chua