Optimization of the Ground Motion Intensity Measure for Long-Span Suspension Bridges Considering the Impulse Effect
Abstract
Doi: 10.28991/HIJ-2025-06-01-07
Full Text: PDF
Keywords
References
Chen, L., & Li, J. (2011). Effects of frequency content of earthquake ground motions on nonlinear seismic responses of RC bridge columns. Journal of Basic Science and Engineering, 19(5), 749–757. doi:10.3969/j.issn.1005-0930.2011.05.007.
Pang, Y., Wu, X., Shen, G., & Yuan, W. (2014). Seismic Fragility Analysis of Cable-Stayed Bridges Considering Different Sources of Uncertainties. Journal of Bridge Engineering, 19(4), 4013015. doi:10.1061/(asce)be.1943-5592.0000565.
Hu, Z., Wei, B., Jiang, L., Li, S., Yu, Y., & Xiao, C. (2022). Assessment of optimal ground motion intensity measure for high-speed railway girder bridge (HRGB) based on spectral acceleration. Engineering Structures, 252, 113728. doi:10.1016/j.engstruct.2021.113728.
Li, S. Q., & Zhong, J. (2024). Development of a seismic vulnerability and risk model for typical bridges considering innovative intensity measures. Engineering Structures, 302, 117431. doi:10.1016/j.engstruct.2023.117431.
Thakkar, K., Rana, A., & Goyal, H. (2023). Fragility analysis of bridge structures: a global perspective & critical review of past & present trends. Advances in Bridge Engineering, 4(1), 10. doi:10.1186/s43251-023-00089-y.
Nielson, B. G., & DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering and Structural Dynamics, 36(6), 823–839. doi:10.1002/eqe.655.
Martin, J., Alipour, A., & Sarkar, P. (2019). Fragility surfaces for multi-hazard analysis of suspension bridges under earthquakes and microbursts. Engineering Structures, 197, 109–169. doi:10.1016/j.engstruct.2019.05.011.
Padgett, J. E., Nielson, B. G., & DesRoches, R. (2008). Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering and Structural Dynamics, 37(5), 711–725. doi:10.1002/eqe.782.
Zhong, J., Pang, Y., Jeon, J. S., Desroches, R., & Yuan, W. (2016). Seismic fragility assessment of long-span cable-stayed bridges in China. Advances in Structural Engineering, 19(11), 1797–1812. doi:10.1177/1369433216649380.
Mackie, K., & Stojadinović, B. (2001). Probabilistic Seismic Demand Model for California Highway Bridges. Journal of Bridge Engineering, 6(6), 468–481. doi:10.1061/(asce)1084-0702(2001)6:6(468).
Wei, B., Hu, Z., He, X., & Jiang, L. (2020). Evaluation of optimal ground motion intensity measures and seismic fragility analysis of a multi-pylon cable-stayed bridge with super-high piers in Mountainous Areas. Soil Dynamics and Earthquake Engineering, 129(105945), 1–12. doi:10.1016/j.soildyn.2019.105945.
Wen, T., Jiang, L., Jiang, L., Zhou, W., & Du, Y. (2024). Optimal intensity measure selection in incremental dynamic analysis: methodology improvements and application to a high-speed railway bridge. Bulletin of Earthquake Engineering, 22(4), 2059–2083. doi:10.1007/s10518-023-01840-6.
Zhang, Y. Y., Ding, Y., & Pang, Y. T. (2015). Selection of optimal intensity measures in seismic damage analysis of cable-stayed bridges subjected to far-fault ground motions. Journal of Earthquake and Tsunami, 9(1), 1550003. doi:10.1142/S1793431115500037.
Avşar, Ö., & Özdemir, G. (2013). Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions. Journal of Bridge Engineering, 18(3), 250–260. doi:10.1061/(asce)be.1943-5592.0000340.
Liao, W. I., Loh, C. H., & Lee, B. H. (2004). Comparison of dynamic response of isolated and non-isolated continuous girder bridges subjected to near-fault ground motions. Engineering Structures, 26(14), 2173–2183. doi:10.1016/j.engstruct.2004.07.016.
Dai, J. C., Wang, D. S., Chen, X. Y., Zhang, R., & Sun, Z. G. (2023). Evaluation of ground motion intensity measures for time-history dynamic analysis of isolated bridges. Structures, 55, 1306–1319. doi:10.1016/j.istruc.2023.06.007.
Ding, J. Y., & Feng, D. C. (2024). Feature selection of ground motion intensity measures for data-driven surrogate modeling of structures. Earthquake Engineering and Structural Dynamics, 53(3), 1216–1237. doi:10.1002/eqe.4068.
Wei, B., Zheng, X., Jiang, L., Lai, Z., Zhang, R., Chen, J., & Yang, Z. (2024). Seismic response prediction and fragility assessment of high-speed railway bridges using machine learning technology. Structures, 66, 106845. doi:10.1016/j.istruc.2024.106845.
McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis. USGS Open-File Report, 76(67), 1-94. doi:10.3133/ofr7667.
Anderson, J. C., & Bertero, V. V. (1987). Uncertainties in Establishing Design Earthquakes. Journal of Structural Engineering, 113(8), 1709–1724. doi:10.1061/(asce)0733-9445(1987)113:8(1709).
Ye, L., Ma, Q., Miao, Z., Guan, H., & Zhuge, Y. (2013). Numerical and comparative study of earthquake intensity indices in seismic analysis. Structural Design of Tall and Special Buildings, 22(4), 362–381. doi:10.1002/tal.693.
Wang, X., Shafieezadeh, A., & Ye, A. (2018). Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground. Bulletin of Earthquake Engineering, 16(1), 229–257. doi:10.1007/s10518-017-0199-2.
JTG/T2231-01-2020 (2020). Ministry of Transport of the People's Republic of China. Specification of seismic design for highway bridges. China Communications Press, Beijing, China.
Zhang, C. M., Tian, S. Z., & Lin, Y. Z. (2015). Study on Correlation between pile-soil-structure interaction and longitudinal Failure of Self-anchored suspension bridge tower. Earthquake Engineering and Engineering Vibration, 35(04), 139–144. doi:10.13197/j.eeev.2015.04.139.zhangcm.016.
Zheng, S. X., Shi, X. H., Jia, H. Y., Zhao, C. H., Qu, H. L., & Shi, X. L. (2020). Seismic response analysis of long-span and asymmetrical suspension bridges subjected to near-fault ground motion. Engineering Failure Analysis, 115, 104615. doi:10.1016/j.engfailanal.2020.104615.
Cheng, Z. Y., Qian, J., Chen, X., & He, J. C. Dynamic Characteristics and seismic analysis of continuous rigid frame Bridges with high and low piers. Railway Construction, 58(07), 18–21.
Wu, F., Luo, J., Zheng, W., Cai, C., Dai, J., Wen, Y., & Ji, Q. (2020). Performance-Based Seismic Fragility and Residual Seismic Resistance Study of a Long-Span Suspension Bridge. Advances in Civil Engineering, 2020, 1–16. doi:10.1155/2020/8822955.
Li, L., Hu, S., & Wang, L. (2017). Seismic fragility assessment of a multi-span cable-stayed bridge with tall piers. Bulletin of Earthquake Engineering, 15(9), 3727–3745. doi:10.1007/s10518-017-0106-x.
Lu, D., Yu, X., Jia, M., & Wang, G. (2014). Seismic risk assessment for a reinforced concrete frame designed according to Chinese codes. Structure and Infrastructure Engineering, 10(10), 1295–1310. doi:10.1080/15732479.2013.791326.
Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. Journal of Structural Engineering, 128(4), 526–533. doi:10.1061/(asce)0733-9445(2002)128:4(526).
Dávalos, H., & Miranda, E. (2019). Filtered incremental velocity: A novel approach in intensity measures for seismic collapse estimation. Earthquake Engineering and Structural Dynamics, 48(12), 1384–1405. doi:10.1002/eqe.3205.
Nielson, B. G. (2005). Analytical fragility curves for highway bridges in moderate seismic zones. Georgia Institute of Technology, Georgia, United States.
DOI: 10.28991/HIJ-2025-06-01-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Junda Su