The Study of Dynamics Heterogeneity in SiO2 Liquid

Giap Thi Thuy Trang, N. H. Linh, N. T. T. Linh, P. H. Kien

Abstract


A molecular dynamics simulation has been carried out to investigate the dynamics heterogeneity of SiO2 liquid at 2600 Kelvin and ambient pressure. We indicate that the diffusion in the liquid is realized by the rate of effective reaction, SiOx->SiOx’ and OSiy->OSiy’. Moreover, the reactions are non-uniform: they are spatially clustered. In addition, we found the clustering from different sets of atoms specified by the mobility of atom or frequency of reactions. Also, results show that the clustering becomes more pronounced at ambient pressure. This evidences the dynamic heterogeneity in the SiO2 liquid.

 

Doi: 10.28991/HIJ-2020-01-01-01

Full Text: PDF


Keywords


Wolf Pack Algorithm; Improvement; Adaptive; Levy Flight; Structural Optimization.

References


Mizuno, H., & Yamamoto, R. (2011). Dynamical heterogeneity in a highly supercooled liquid: Consistent calculations of correlation length, intensity, and lifetime. Physical Review E, 84(1). doi:10.1103/physreve.84.011506.

Franz, S., Parisi, G., Ricci-Tersenghi, F., & Rizzo, T. (2011). Field theory of fluctuations in glasses. The European Physical Journal E, 34(9). doi:10.1140/epje/i2011-11102-0.

Tracht, U., Wilhelm, M., Heuer, A., Feng, H., Schmidt-Rohr, K., & Spiess, H. W. (1998). Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance. Physical Review Letters, 81(13), 2727–2730. doi:10.1103/physrevlett.81.2727.

Qiu, X. and Ediger, M. D. (2003). Length scale of dynamic Heterogeneity in supercooledd-Sorbitol: comparison to Model predictions. The Journal of Physical Chemistry B, 107(2), 459–464. doi:10.1021/jp021888b.

Sen, S. (2008). Differential mobility and spatially heterogeneous dynamics of oxygen atoms in a supercooled glass-forming network liquid. Physical Review B, 78(10). doi:10.1103/physrevb.78.100201.

Hoang, V. V., Zung, H., & Hai, N. T. (2007). Diffusion and dynamical heterogeneity in simulated liquid SiO2under high pressure. Journal of Physics: Condensed Matter, 19(11), 116104. doi:10.1088/0953-8984/19/11/116104.

Flenner, E., & Szamel, G. (2007). Anisotropic spatially heterogeneous dynamics in a model glass-forming binary mixture. Journal of Physics: Condensed Matter, 19(20), 205125. doi:10.1088/0953-8984/19/20/205125.

Vogel, M., & Glotzer, S. C. (2004). Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica. Physical Review E, 70(6). doi:10.1103/physreve.70.061504.

Mei, Q., Benmore, C. J., & Weber, J. K. R. (2007). Structure of Liquid SiO2: A Measurement by High-Energy X-Ray Diffraction. Physical Review Letters, 98(5). doi:10.1103/physrevlett.98.057802.

Hung, P. K., Hong, N. V., Trang, G. T. T., & Iitaka, T. (2019). Topological analysis on structure and dynamics of SiO2 liquid with the help of Si-particle and O-particle statistics. Materials Research Express, 6(8), 085201. doi:10.1088/2053-1591/ab1c73.

Hung, P. K., Vinh, L. T., Hong, N. V., Trang, G. T. T., & Nhan, N. T. (2019). Insight into microstructure and dynamics of network forming liquid from the analysis based on shell–core particles. The European Physical Journal B, 92(8). doi:10.1140/epjb/e2019-100255-8.

Hung, P. K., Vinh, L. T., Ha, N. T., Trang, G. T. T., & Hong, N. V. (2020). Domain structure and oxygen-pockets in the silica melt under pressure. Journal of Non-Crystalline Solids, 530, 119780. doi:10.1016/j.jnoncrysol.2019.119780.

Vogel, M., & Glotzer, S. C. (2004). Spatially Heterogeneous Dynamics and Dynamic Facilitation in a Model of Viscous Silica. Physical Review Letters, 92(25). doi:10.1103/physrevlett.92.255901.

Xu, W.-S., Sun, Z.-Y., & An, L.-J. (2012). Effect of attractions on correlation length scales in a glass-forming liquid. Physical Review E, 86(4). doi:10.1103/physreve.86.041506.

Vargheese, K. D., Tandia, A., & Mauro, J. C. (2010). Origin of dynamical heterogeneities in calcium aluminosilicate liquids. The Journal of Chemical Physics, 132(19), 194501. doi:10.1063/1.3429880.

Adam, G., & Gibbs, J. H. (1965). On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids. The Journal of Chemical Physics, 43(1), 139-146. doi:10.1063/1.1696442.

Gotze, W., & Sjogren, L. (1992). Relaxation processes in supercooled liquids. Reports on Progress in Physics, 55(3), 241–376. doi:10.1088/0034-4885/55/3/001.

Tanaka, H. (2005). Two-order-parameter model of the liquid–glass transition. II. Structural relaxation and dynamic heterogeneity. Journal of Non-Crystalline Solids, 351(43-45), 3385–3395. doi:10.1016/j.jnoncrysol.2005.09.009.

Weeks, E. R., J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Wei (2000). Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition. Science, 287(5453), 627–631. doi:10.1126/science.287.5453.627.

Weeks, E. R., Crocker, J. C., & Weitz, D. A. (2007). Short- and long-range correlated motion observed in colloidal glasses and liquids. Journal of Physics: Condensed Matter, 19(20), 205131. doi:10.1088/0953-8984/19/20/205131.

Tanaka, H., Kawasaki, T., Shintani, H., & Watanabe, K. (2010). Critical-like behaviour of glass-forming liquids. Nature Materials, 9(4), 324–331. doi:10.1038/nmat2634.

Kawasaki, T., & Tanaka, H. (2011). Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order. Journal of Physics: Condensed Matter, 23(19), 194121. doi:10.1088/0953-8984/23/19/194121.

Hung, P. K., Hong, N. V., & Vinh, L. T. (2007). Diffusion and structure in silica liquid: a molecular dynamics simulation. Journal of Physics: Condensed Matter, 19(46), 466103. doi:10.1088/0953-8984/19/46/466103.

Tatarinova, L. I. (1983). Structure of solid amorphous and liquid substances. From: Moscow, Nauka, 619097.

Hung, P. K., Kien, P. H., San, L. T., & Hong, N. V. (2016). The study of diffusion in network-forming liquids under pressure and temperature. Physica B: Condensed Matter, 501, 18–25. doi:10.1016/j.physb.2016.07.033.


Full Text: PDF

DOI: 10.28991/HIJ-2020-01-01-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Giap Thi Thuy Trang