A Novel Classification Model Based on Hybrid K-Means and Neural Network for Classification Problems
Abstract
Doi: 10.28991/HIJ-2024-05-03-012
Full Text: PDF
Keywords
References
Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J., Biancolillo, A., Cropotova, J., Galanakis, C. M., Jambrak, A. R., Lorenzo, J. M., Måge, I., Ozogul, F., & Regenstein, J. (2023). The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 63(23), 6547–6563. doi:10.1080/10408398.2022.2034735.
Meiring, G. A. M., & Myburgh, H. C. (2015). A review of intelligent driving style analysis systems and related artificial intelligence algorithms. Sensors (Switzerland), 15(12), 30653–30682. doi:10.3390/s151229822.
Celebi, M. E., & Aydin, K. (2016). Unsupervised learning algorithms. Unsupervised Learning Algorithms, 8, 55-70. doi:10.1007/978-3-319-24211-8.
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics (Switzerland), 9(8), 1–12. doi:10.3390/electronics9081295.
Azar, A. T., Gaber, T., Oliva, D., Ṭulbah, M. F., & Hassanien, A. E. (2020). Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), 1153, 247–257.
Chenghu, C., Jinna, H., Visavakitcharoen, A., Temdee, P., & Chaisricharoen, R. (2019). Identifying the effectiveness of arabica drip coffee on individual human brainwave. ECTI DAMT-NCON 2019 - 4th International Conference on Digital Arts, Media and Technology and 2nd ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, 1–4. doi:10.1109/ECTI-NCON.2019.8692298.
Chen, G., Liu, Y., & Ge, Z. (2019). K-means Bayes algorithm for imbalanced fault classification and big data application. Journal of Process Control, 81, 54–64. doi:10.1016/j.jprocont.2019.06.011.
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. doi:10.1016/j.ins.2022.11.139.
Wang, Z., Du, X., & Wu, L. (2022). AI-Based Secure Construction of University Information Services Platform. Security and Communication Networks, 2022(1), 1939796. doi:10.1155/2022/1939796.
Khanmohammadi, S., Adibeig, N., & Shanehbandy, S. (2017). An improved overlapping k-means clustering method for medical applications. Expert Systems with Applications, 67, 12–18. doi:10.1016/j.eswa.2016.09.025.
Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intelligence, 48(12), 4743–4759. doi:10.1007/s10489-018-1238-7.
Danganan, A. E., & De Los Reyes, E. (2021). Ehmcoke: An enhanced overlapping clustering algorithm for data analysis. Bulletin of Electrical Engineering and Informatics, 10(4), 2212–2222. doi:10.11591/EEI.V10I4.2547.
Chen, Y. C., Chen, Y. L., & Lu, J. Y. (2021). MK-Means: Detecting evolutionary communities in dynamic networks. Expert Systems with Applications, 176, 114807. doi:10.1016/j.eswa.2021.114807.
Nie, F., Li, Z., Wang, R., & Li, X. (2023). An Effective and Efficient Algorithm for K-Means Clustering with New Formulation. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3433–3443. doi:10.1109/TKDE.2022.3155450.
Sieranoja, S., & Fränti, P. (2022). Adapting k-means for graph clustering. Knowledge and Information Systems, 64(1), 115–142. doi:10.1007/s10115-021-01623-y.
Gan, G., & Ng, M. K. P. (2017). K-Means Clustering with Outlier Removal. Pattern Recognition Letters, 90, 8–14. doi:10.1016/j.patrec.2017.03.008.
Wang, P., Shi, H., Yang, X., & Mi, J. (2019). Three-way k-means: integrating k-means and three-way decision. International journal of machine learning and cybernetics, 10, 2767-2777. doi:10.1007/s13042-018-0901-y.
Lu, X., Ye, X., & Cheng, Y. (2024). An overlapping minimization-based over-sampling algorithm for binary imbalanced classification. Engineering Applications of Artificial Intelligence, 133, 108107. doi:10.1016/j.engappai.2024.108107.
Afridi, M. K., Azam, N., & Yao, J. T. (2020). Variance based three-way clustering approaches for handling overlapping clustering. International Journal of Approximate Reasoning, 118, 47–63. doi:10.1016/j.ijar.2019.11.011.
Dai, Q., Wang, L. hui, Xu, K. long, Du, T., & Chen, L. fang. (2024). Class-overlap detection based on heterogeneous clustering ensemble for multi-class imbalance problem. Expert Systems with Applications, 255, 124558. doi:10.1016/j.eswa.2024.124558.
Zhou, Q., & Sun, B. (2024). Adaptive K-means clustering based under-sampling methods to solve the class imbalance problem. Data and Information Management, 8(3), 100064. doi:10.1016/j.dim.2023.100064.
Zhu, J., Jiang, Z., Evangelidis, G. D., Zhang, C., Pang, S., & Li, Z. (2019). Efficient registration of multi-view point sets by K-means clustering. Information Sciences, 488, 205–218. doi:10.1016/j.ins.2019.03.024.
Ros, F., & Riad, R. (2024). Feature and Dimensionality Reduction for Clustering with Deep Learning. Springer Nature, XI, 268. doi:10.1007/978-3-031-48743-9.
Lücke, J., & Forster, D. (2019). k-means as a variational EM approximation of Gaussian mixture models. Pattern Recognition Letters, 125, 349–356. doi:10.1016/j.patrec.2019.04.001.
Liu, X., Fan, K., Huang, X., Ge, J., Liu, Y., & Kang, H. (2024). Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chemical Engineering Journal, 490. doi:10.1016/j.cej.2024.151625.
Vuttipittayamongkol, P., Elyan, E., Petrovski, A., & Jayne, C. (2018). Overlap-Based Undersampling for Improving Imbalanced Data Classification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11314 LNCS, 689–697. doi:10.1007/978-3-030-03493-1_72.
Huang, S., Kang, Z., Xu, Z., & Liu, Q. (2021). Robust deep k-means: An effective and simple method for data clustering. Pattern Recognition, 117, 107996. doi:10.1016/j.patcog.2021.107996.
Saputra, D. M., Saputra, D., & Oswari, L. D. (2020). Effect of Distance Metrics in Determining K-Value in K-Means Clustering Using Elbow and Silhouette Method. Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), 341–346. doi:10.2991/aisr.k.200424.051.
Shi, H., Wang, P., Yang, X., & Yu, H. (2022). An Improved Mean Imputation Clustering Algorithm for Incomplete Data. Neural Processing Letters, 54(5), 3537–3550. doi:10.1007/s11063-020-10298-5.
Anastassiou, G. A. (2023). Multiple general sigmoids based Banach space valued neural network multivariate approximation. Cubo, 25(3), 411–439. doi:10.56754/0719-0646.2503.411.
Patel, J., Advani, H., Paul, S., & Maiti, T. K. (2022). VLSI Implementation of Neural Network Based Emergent Behavior Model for Robot Control. 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings, 197–200. doi:10.1109/DISCOVER55800.2022.9974734.
Szu, H., Yeh, C., Rogers, G., Jenkins, M., Farsaie, A., & Lee, C. H. (1992). Speed up Performances on MIMD Machines. In Proceedings of the International Joint Conference on Neural Networks, 3, 742–747. doi:10.1109/IJCNN.1992.227063.
Nguyen, V. A., Shafieezadeh-Abadeh, S., Kuhn, D., & Esfahani, P. M. (2023). Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization. Mathematics of Operations Research, 48(1), 1–37. doi:10.1287/moor.2021.1176.
Sefira, R., Setiawan, A., Hidayatullah, R., & Darmayanti, R. (2024). The Influence of the Snowball Throwing Learning Model on Pythagorean Theorem Material on Learning Outcomes. Journal Edutechnium Journal of Educational Technology, 2(1), 1–7.
Cheng, Y., Li, Q., & Wan, F. (2021). Financial Risk Management using Machine Learning Method. Proceedings - 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence, MLBDBI 2021, 133–139. doi:10.1109/MLBDBI54094.2021.00034.
Wang, L. H., Dai, Q., Wang, J. Y., Du, T., & Chen, L. (2024). Undersampling based on generalized learning vector quantization and natural nearest neighbors for imbalanced data. International Journal of Machine Learning and Cybernetics, 1–26. doi:10.1007/s13042-024-02261-w.
DOI: 10.28991/HIJ-2024-05-03-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 CUI CHENGHU