Research on Power Consumption Data Prediction of Distributed Photovoltaic Power Station
Abstract
Doi: 10.28991/HIJ-2024-05-04-05
Full Text: PDF
Keywords
References
Jovijari, F., & Mehrpooya, M. (2024). Development of crude oil desalination unit by using solar flat plate collectors. Applied Thermal Engineering, 239, 122110. doi:10.1016/j.applthermaleng.2023.122110.
Awogbemi, O., & Von Kallon, D. V. (2023). Towards the development of underutilized renewable energy resources in achieving carbon neutrality. Fuel Communications, 100099.doi:10.1016/j.jfueco.2023.100099.
Rafiq, M., Mahr, M. S., Imran, R., Shaban, M., Al-Saeedi, S. I., Hasanin, T. H. A., Salim, M., & Ibrahim, M. A. A. (2023). Towards Development of High-Performance Perovskite Solar Cells Based on Pyrrole Materials for Hole Transport Layer by Using Computational Approach. Journal of Computational Biophysics and Chemistry, 22(8), 1097–1113. doi:10.1142/S2737416523420127.
Charbonnier, F., Morstyn, T., & McCulloch, M. (2024). Home electricity data generator (HEDGE): An open-access tool for the generation of electric vehicle, residential demand, and PV generation profiles. MethodsX, 12, 102618. doi:10.1016/j.mex.2024.102618.
Liang, Y., Li, P., Su, W., Li, W., & Xu, W. (2024). Development of green data center by configuring photovoltaic power generation and compressed air energy storage systems. Energy, 292. doi:10.1016/j.energy.2024.130516.
Qiu, Z., Tian, Y., Luo, Y., Gu, T., & Liu, H. (2024). Wind and Photovoltaic Power Generation Forecasting for Virtual Power Plants Based on the Fusion of Improved K-Means Cluster Analysis and Deep Learning. Sustainability, 16(23), 10740. doi:10.3390/su162310740.
Yu, X. P., Li, P., Zhang, Y., Li, H., Yang, M., Zheng, Y., & Xue, M. (2022, November). Research on New Energy Generation Market Transaction Based on Sales Risk Control Strategy. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), 2008-2014. doi:10.1109/EI256261.2022.10117401.
Lu, P., Ye, L., Zhong, W., Qu, Y., Zhai, B., Tang, Y., & Zhao, Y. (2020). A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy. Journal of Cleaner Production, 254, 119993. doi:10.1016/j.jclepro.2020.119993.
Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar energy, 136, 78-111. doi:10.1016/j.solener.2016.06.069.
Zhang, W., Li, Q., & He, Q. (2022). Application of machine learning methods in photovoltaic output power prediction: A review. Journal of Renewable and Sustainable Energy, 14(2), 022701. doi:10.1063/5.0082629.
Al-Dahidi, S., Madhiarasan, M., Al-Ghussain, L., Abubaker, A. M., Ahmad, A. D., Alrbai, M., ... & Zio, E. (2024). Forecasting solar photovoltaic power production: a comprehensive review and innovative data-driven modeling framework. Energies, 17(16), 4145. doi:10.3390/en17164145.
Herraiz, Á. H., Marugán, A. P., & Márquez, F. P. G. (2020). Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renewable Energy, 153, 334-348. doi:10.1016/j.renene.2020.01.148
Bo, G., Chao, M., Chongbiao, Z., Weijie, Q., Chao, F., & Chao, Z. (2023). Output Forecast of Distributed Photovoltaic Power Generation based on Spatial-Temporal Graph Neural Network. Journal of Electric Power Systems and Automation, 35, 125–133.
Wang, S., Yan, S., Li, H., Zhang, T., Jiang, W., Yang, B., ... & Wang, J. (2024). Short-term prediction of photovoltaic power based on quadratic decomposition and residual correction. Electric Power Systems Research, 236, 110968. doi:10.1016/j.epsr.2024.110968.
Hou, L., Ding, H., Liu, Y., & Wang, S. (2022). Evaluation and suggestion on the subsidy policies for rural clean heating in winter in the Beijing-Tianjin-Hebei region. Energy and Buildings, 274, 112456. doi:10.1016/j.enbuild.2022.112456.
Wang, Y., Chen, L., & Shi, X. (2023). Prediction of scrap volume and recyclable resource potential of distributed photovoltaic power generation equipment in the Beijing-Tianjin-Hebei region. Resources Science, 45(10), 2076–2088. doi:10.18402/resci.2023.10.12.
Molina, M. G., & Espejo, E. J. (2014). Modeling and simulation of grid-connected photovoltaic energy conversion systems. International Journal of Hydrogen Energy, 39(16), 8702-8707. doi:10.1016/j.ijhydene.2013.12.048.
Zhang, C., Yan, X., & Nie, J. (2023). Economic analysis of whole-county PV projects in China considering environmental benefits. Sustainable Production and Consumption, 40, 516-531. doi:10.1016/j.spc.2023.07.020.
Li, J., Wang, P., Dong, H., & Shen, J. (2022). Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization. Applied Soft Computing, 122, 108798. doi:10.1016/j.asoc.2022.108798.
de Souza, L. P., Sanches-Neto, F. O., Junior, G. M. Y., Ramos, B., Lastre-Acosta, A. M., Carvalho-Silva, V. H., & Teixeira, A. C. S. C. (2022). Photochemical environmental persistence of venlafaxine in an urban water reservoir: A combined experimental and computational investigation. Process Safety and Environmental Protection, 166, 478-490. doi:10.1016/j.psep.2022.08.049.
DOI: 10.28991/HIJ-2024-05-04-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Junfeng Yao, Chun Xiao, Junbo Hao, Xiaoxia Yang