Cryptocurrency Forecasting Using Deep Learning Models: A Comparative Analysis

Rachid Bourday, Issam Aatouchi, Mounir Ait Kerroum, Ali Zaaouat

Abstract


Bitcoin has recently grown to prominence as a decentralized digital currency, attracting significant interest for its potential transformation of the financial market. Forecasting Bitcoin's price is crucial for investors, traders, and academics, given the currency's inherent volatility, which makes accurately predicting future prices challenging. This article aims to provide a comprehensive and comparative analysis of Deep Learning Forecasting Models in order to predict Bitcoin prices in the short and medium terms: Transformer with XGBoost, Transformer with ANN, Transformer with LSTM, and Transformer with SVR. This study is the first to explore the effectiveness of transformer-based architectures, particularly focusing on feature extraction, in complex financial market predictions. Therefore, we trained these models using historical Bitcoin data from 2016 to 2023 and evaluated their performance on a test dataset. Our experiments demonstrate that the Transformer with the XGBoost model outperforms the baseline models, achieving a Mean Absolute Error (MAE) of 0.011 and a Root Mean Squared Error (RMSE) of 0.018. Our findings suggest that the use of advanced deep learning techniques effectively manages the complexities of the cryptocurrency market, offering significant improvements over traditional methods and guiding investors in the cryptocurrency markets.

 

Doi: 10.28991/HIJ-2024-05-04-013

Full Text: PDF


Keywords


Forecasting; Deep Learning; Machine learning; Transformer; LSTM; XGBoost.

References


Kaushal, R. (2016). Bitcoin: First Decentralized Payment System. International Journal of Engineering and Computer Science, 5(5), 16514–16517. doi:10.18535/ijecs/v5i5.30.

Oliver, J. (2013). Mastering blockchain distributed ledger technology, and smart contracts explained. ‎ Packt Publishing, Birmingham, United Kingdom.

Doumenis, Y., Izadi, J., Dhamdhere, P., Katsikas, E., & Koufopoulos, D. (2021). A critical analysis of volatility surprise in bitcoin cryptocurrency and other financial assets. Risks, 9(11), 207. doi:10.3390/risks9110207.

Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28–43. doi:10.1016/j.ijforecast.2020.02.008.

Ibrahim, A., Kashef, R., & Corrigan, L. (2021). Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers and Electrical Engineering, 89, 106905. doi:10.1016/j.compeleceng.2020.106905.

Baur, D. G., Dimpfl, T., & Kuck, K. (2018). Bitcoin, gold and the US dollar – A replication and extension. Finance Research Letters, 25, 103–110. doi:10.1016/j.frl.2017.10.012.

Fakhfekh, M., & Jeribi, A. (2020). Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models. Research in International Business and Finance, 51. doi:10.1016/j.ribaf.2019.101075.

Khedr, A. M., Arif, I., Pravija Raj, P. V., El-Bannany, M., Alhashmi, S. M., & Sreedharan, M. (2021). Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey. Intelligent Systems in Accounting, Finance and Management, 28(1), 3–34. doi:10.1002/isaf.1488.

Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility-forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 109, 1–11. doi:10.1016/j.eswa.2018.05.011.

Hajek, P., Hikkerova, L., & Sahut, J. M. (2023). How well do investor sentiment and ensemble learning predict Bitcoin prices? Research in International Business and Finance, 64, 101836. doi:10.1016/j.ribaf.2022.101836.

Cui, T., Ding, S., Jin, H., & Zhang, Y. (2023). Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach. Economic Modelling, 119. doi:10.1016/j.econmod.2022.106078.

Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2021). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 40, 101755. doi:10.1016/j.frl.2020.101755.

Ortu, M., Uras, N., Conversano, C., Bartolucci, S., & Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198, 116804. doi:10.1016/j.eswa.2022.116804.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, California, United States. doi:10.48550/arXiv.1706.03762

Boongasame, L., & Songram, P. (2023). Cryptocurrency price forecasting method using long short-term memory with time-varying parameters. Indonesian Journal of Electrical Engineering and Computer Science, 30(1), 435–443. doi:10.11591/ijeecs.v30.i1.pp435-443.

Fleischer, J. P., von Laszewski, G., Theran, C., & Bautista, Y. J. P. (2022). Time Series Analysis of Cryptocurrency Prices Using Long Short-Term Memory. Algorithms, 15(7), 230. doi:10.3390/a15070230.

Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A Deep Learning-based Cryptocurrency Price Prediction Scheme for Financial Institutions. Journal of Information Security and Applications, 55(102583). doi:10.1016/j.jisa.2020.102583.

Tripathy, N., Hota, S., & Mishra, D. (2023). Performance analysis of bitcoin forecasting using deep learning techniques. Indonesian Journal of Electrical Engineering and Computer Science, 31(3), 1515-1522.

Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317.

McNally, S., Roche, J., & Caton, S. (2018). Predicting the Price of Bitcoin Using Machine Learning. In Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018, 339–343. doi:10.1109/PDP2018.2018.00060.

Wu, C. H., Lu, C. C., Ma, Y. F., & Lu, R. S. (2018). A new forecasting framework for bitcoin price with LSTM. In 2018 IEEE international conference on data mining workshops (ICDMW), 168-175. doi:10.1109/ICDMW.2018.00032.

Li, Y., & Dai, W. (2020). Bitcoin price forecasting method based on CNN‐LSTM hybrid neural network model. The Journal of Engineering, 2020(13), 344–347. doi:10.1049/joe.2019.1203.

Ramos-Pérez, E., Alonso-González, P. J., & Núñez-Velázquez, J. J. (2021). Multi-transformer: A new neural network-based architecture for forecasting s&p volatility. Mathematics, 9(15), 1794. doi:10.3390/math9151794.

Kanaparthi, V. (2024). Robustness Evaluation of LSTM-based Deep Learning Models for Bitcoin Price Prediction in the Presence of Random Disturbances. International Journal of Innovative Science and Modern Engineering, 12(2), 14–23. doi:10.35940/ijisme.b1313.12020224.

Khaniki, M. A. L., & Manthouri, M. (2024). Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators. arXiv preprint, arXiv:2403.03606. doi:10.48550/arXiv.2403.03606.

Jin, C., & Li, Y. (2023). Cryptocurrency Price Prediction Using Frequency Decomposition and Deep Learning. Fractal and Fractional, 7(10), 708. doi:10.3390/fractalfract7100708.

Chen, J. (2023). Analysis of Bitcoin Price Prediction Using Machine Learning. Journal of Risk and Financial Management, 16(1), 51. doi:10.3390/jrfm16010051.

Ladhari, A., & Boubaker, H. (2024). Deep Learning Models for Bitcoin Prediction Using Hybrid Approaches with Gradient-Specific Optimization. Forecasting, 6(2), 279–295. doi:10.3390/forecast6020016.

Frohmann, M., Karner, M., Khudoyan, S., Wagner, R., & Schedl, M. (2023). Predicting the Price of Bitcoin Using Sentiment-Enriched Time Series Forecasting. Big Data and Cognitive Computing, 7(3), 137. doi:10.3390/bdcc7030137.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, New York, United States. doi:10.1007/978-0-387-21606-5.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85–117. doi:10.1016/j.neunet.2014.09.003.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 9.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.

O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41(5), 673–690. doi:10.1007/s11135-006-9018-6.

Staniswalis, J. G., Severini, T. A., & Moschopoulos, P. G. (1993). On a data based power transformation for reducing skewness. Journal of Statistical Computation and Simulation, 46(1–2), 91–100. doi:10.1080/00949659308811495.

Han, X., Huang, Y., Pan, Z., Li, W., Hu, Y., & Lin, G. (2023). Multi-Task Time Series Forecasting Based on Graph Neural Networks. Entropy, 25(8), 1136. doi:10.3390/e25081136.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rachid BOURDAY