Using Multilayer Perceptron Neural Network to Assess the Critical Factors of Traffic Accidents

Athapol Ruangkanjanases, Ornlatcha Sivarak, Zi-Jie Weng, Asif Khan, Shih-Chih Chen

Abstract


This study is based on the traffic accident data of Taoyuan City from the government's open data. The study compiled the data set of traffic accidents in Taiwan from 2012 to 2017, and six classifiers were applied to evaluate the effectiveness of traffic accident prediction with the number of injuries as the prediction target. In order to verify the classifier's stability, cross-validation was used to evaluate the model during the training process, and the multilayer perceptron neural network (MLPNN) classifier performed best in testing the dataset's accuracy and evaluating the model's best performance. Then, a boosting ensemble learning approach and a combination of traffic accident factors improve the experiment's performance. According to this experiment, the results show that this study uses the Pearson Chi-square feature selection method to select important traffic factor combinations, and the boosting method indeed helps improve the effectiveness of the construction of the traffic accident model. Finally, the experimental results of the NN-MLP model have a correct rate of 77% and AUC is 78.7%. In constructing the model, it was found that the degree of injury, the part of the vehicle hit, the type of accident, the leading cause, the type of vehicle, and the period of the accident were the main factors causing dangerous traffic accidents.

 

Doi: 10.28991/HIJ-2024-05-01-012

Full Text: PDF


Keywords


Data Mining; Multilayer Perceptron Neural Network; Traffic Accident; Government Open Data; Feature Selection.

References


Qiu, C., Wang, C., Fang, B., & Zuo, X. (2014). A multiobjective particle swarm optimization-based partial classification for accident severity analysis. Applied Artificial Intelligence, 28(6), 555-576. doi:10.1080/08839514.2014.923166.

Ernstberger, A., Joeris, A., Daigl, M., Kiss, M., Angerpointner, K., Nerlich, M., & Schmucker, U. (2015). Decrease of morbidity in road traffic accidents in a high income country - An analysis of 24,405 accidents in a 21 year period. Injury, 46, S135–S143. doi:10.1016/S0020-1383(15)30033-4.

Torayan, T., Laych, K., Peden, M., Kurg, E., Heimann, A., Senisse, A., ... & Chowdhury, S. (2015). Global Statue Report on Road Safety 2015. World Health Organization: Geneva, Switzerland.

Chan, Y. S., Chen, C. S., Huang, L., & Peng, Y. I. (2017). Sanction changes and drunk-driving injuries/deaths in Taiwan. Accident Analysis and Prevention, 107, 102–109. doi:10.1016/j.aap.2017.07.025.

MOTC. (2024). Freeway Bureau: Traffic Volume Survey. Ministry of Transportation and Communications, New Taipei City, Taiwan.

Chen, W. H., & Jovanis, P. P. (2000). Method for identifying factors contributing to driver-injury severity in traffic crashes. Transportation Research Record, 1717, 1–9. doi:10.3141/1717-01.

Sadollah, A., Gao, K., Zhang, Y., Zhang, Y., & Su, R. (2019). Management of traffic congestion in adaptive traffic signals using a novel classification-based approach. Engineering Optimization, 51(9), 1509–1528. doi:10.1080/0305215X.2018.1525708.

Nallaperuma, S., Jalili, S., Keedwell, E., Dawn, A., & Oakes-Ash, L. (2020). Optimisation of Signal Timings in a Road Network. Springer Proceedings in Complexity, 257–268. doi:10.1007/978-3-030-40943-2_22.

Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1), 100–108. doi:10.1002/for.2425.

Castro, Y., & Kim, Y. J. (2016). Data mining on road safety: Factor assessment on vehicle accidents using classification models. International Journal of Crashworthiness, 21(2), 104–111. doi:10.1080/13588265.2015.1122278.

Kumar, S., & Toshniwal, D. (2015). A data mining framework to analyze road accident data. Journal of Big Data, 2(1), 26. doi:10.1186/s40537-015-0035-y.

Kumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1), 62–72. doi:10.1007/s40534-016-0095-5.

Zeng, Q., Wen, H., & Huang, H. (2016). The interactive effect on injury severity of driver-vehicle units in two-vehicle crashes. Journal of Safety Research, 59, 105–111. doi:10.1016/j.jsr.2016.10.005.

Van Beeck, E. F., Borsboom, G. J. J., & Mackenbach, J. P. (2000). Economic development and traffic accident mortality in the industrialized world, 1962-1990. International Journal of Epidemiology, 29(3), 503–509. doi:10.1093/intjepid/29.3.503.

Abellán, J., López, G., & De Oña, J. (2013). Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications, 40(15), 6047–6054. doi:10.1016/j.eswa.2013.05.027.

Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys and Tutorials, 18(2), 1153–1176. doi:10.1109/COMST.2015.2494502.

Zou, Q., Zeng, J., Cao, L., & Ji, R. (2016). A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 173, 346–354. doi:10.1016/j.neucom.2014.12.123.

Yu, Z., Haghighat, F., & Fung, B. C. M. (2016). Advances and challenges in building engineering and data mining applications for energy-efficient communities. Sustainable Cities and Society, 25, 33–38. doi:10.1016/j.scs.2015.12.001.

Ahmed, A. B. E. D., & Elaraby, I. S. (2014). Data Mining: A prediction for Student’s Performance Using Classification Method. World Journal of Computer Application and Technology, 2(2), 43–47. doi:10.13189/wjcat.2014.020203.

Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. doi:10.1016/j.aci.2014.10.001.

Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717–727. doi:10.1016/S0731-7085(99)00272-1.

Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. doi:10.1016/S1352-2310(97)00447-0.

West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11–12), 1131–1152. doi:10.1016/S0305-0548(99)00149-5.

Er, M. J., Wu, S., Lu, J., & Toh, H. L. (2002). Face recognition with radial basis function (RBF) neural networks. IEEE Transactions on Neural Networks, 13(3), 697–710. doi:10.1109/TNN.2002.1000134.

Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21(15), 3301–3307. doi:10.1093/bioinformatics/bti499.

Wijnen, W., & Stipdonk, H. (2016). Social costs of road crashes: An international analysis. Accident Analysis and Prevention, 94, 97–106. doi:10.1016/j.aap.2016.05.005.

Bambach, M. R., & Mitchell, R. J. (2015). Estimating the human recovery costs of seriously injured road crash casualties. Accident Analysis and Prevention, 85, 177–185. doi:10.1016/j.aap.2015.09.013.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268. doi:10.1016/j.eswa.2014.07.040.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. doi:10.1016/j.ipm.2009.03.002.

Maas, A. I. R., Hukkelhoven, C. W. P. M., Marshall, L. F., & Steyerberg, E. W. (2005). Prediction of outcome in traumatic brain injury with computed tomographic characteristics: A comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery, 57(6), 1173–1181. doi:10.1227/01.NEU.0000186013.63046.6B.

Guha, R., Ghosh, M., Mutsuddi, S., Sarkar, R., & Mirjalili, S. (2020). Embedded chaotic whale survival algorithm for filter–wrapper feature selection. Soft Computing, 24(17), 12821–12843. doi:10.1007/s00500-020-05183-1.

Ardakani, S. P., Liang, X., Mengistu, K. T., So, R. S., Wei, X., He, B., & Cheshmehzangi, A. (2023). Road Car Accident Prediction Using a Machine-Learning-Enabled Data Analysis. Sustainability (Switzerland), 15(7), 5939. doi:10.3390/su15075939.

Ding, T., Zhang, L., Xi, J., Li, Y., Zheng, L., & Zhang, K. (2023). Bus Fleet Accident Prediction Based on Violation Data: Considering the Binding Nature of Safety Violations and Service Violations. Sustainability (Switzerland), 15(4), 3520. doi:10.3390/su15043520.

Wang, S., Changshun, Y., & Yong, S. (2023). A Review of Road Traffic Accident Prediction Methods. American Journal of Management Science and Engineering. doi:10.11648/j.ajmse.20230803.12.

Almanie, T. (2023). Quantitative Study of Traffic Accident Prediction Models: A Case Study of Virginia Accidents. The International Journal of Advanced Networking and Applications, 14(05), 5582–5589. doi:10.35444/ijana.2023.14501.

Khabiri, M. M., Ghahfarokhi, F. M., Sarfaraz, S., & Anaie, H. M. (2022). Application of Data Mining Algorithm To Investigate the Effect of Intelligent Transportation Systems on Road Accidents Reduction By Decision Tree. Communications - Scientific Letters of the University of Žilina, 24(2), F36–F45. doi:10.26552/com.C.2022.2.F36-F45.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-01-012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Athapol Ruangkanjanases, Ornlatcha Sivarak, Zi-Jie Weng, Asif Khan, Shih-Chih Chen