Using Multilayer Perceptron Neural Network to Assess the Critical Factors of Traffic Accidents
Abstract
Doi: 10.28991/HIJ-2024-05-01-012
Full Text: PDF
Keywords
References
Qiu, C., Wang, C., Fang, B., & Zuo, X. (2014). A multiobjective particle swarm optimization-based partial classification for accident severity analysis. Applied Artificial Intelligence, 28(6), 555-576. doi:10.1080/08839514.2014.923166.
Ernstberger, A., Joeris, A., Daigl, M., Kiss, M., Angerpointner, K., Nerlich, M., & Schmucker, U. (2015). Decrease of morbidity in road traffic accidents in a high income country - An analysis of 24,405 accidents in a 21 year period. Injury, 46, S135–S143. doi:10.1016/S0020-1383(15)30033-4.
Torayan, T., Laych, K., Peden, M., Kurg, E., Heimann, A., Senisse, A., ... & Chowdhury, S. (2015). Global Statue Report on Road Safety 2015. World Health Organization: Geneva, Switzerland.
Chan, Y. S., Chen, C. S., Huang, L., & Peng, Y. I. (2017). Sanction changes and drunk-driving injuries/deaths in Taiwan. Accident Analysis and Prevention, 107, 102–109. doi:10.1016/j.aap.2017.07.025.
MOTC. (2024). Freeway Bureau: Traffic Volume Survey. Ministry of Transportation and Communications, New Taipei City, Taiwan.
Chen, W. H., & Jovanis, P. P. (2000). Method for identifying factors contributing to driver-injury severity in traffic crashes. Transportation Research Record, 1717, 1–9. doi:10.3141/1717-01.
Sadollah, A., Gao, K., Zhang, Y., Zhang, Y., & Su, R. (2019). Management of traffic congestion in adaptive traffic signals using a novel classification-based approach. Engineering Optimization, 51(9), 1509–1528. doi:10.1080/0305215X.2018.1525708.
Nallaperuma, S., Jalili, S., Keedwell, E., Dawn, A., & Oakes-Ash, L. (2020). Optimisation of Signal Timings in a Road Network. Springer Proceedings in Complexity, 257–268. doi:10.1007/978-3-030-40943-2_22.
Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1), 100–108. doi:10.1002/for.2425.
Castro, Y., & Kim, Y. J. (2016). Data mining on road safety: Factor assessment on vehicle accidents using classification models. International Journal of Crashworthiness, 21(2), 104–111. doi:10.1080/13588265.2015.1122278.
Kumar, S., & Toshniwal, D. (2015). A data mining framework to analyze road accident data. Journal of Big Data, 2(1), 26. doi:10.1186/s40537-015-0035-y.
Kumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1), 62–72. doi:10.1007/s40534-016-0095-5.
Zeng, Q., Wen, H., & Huang, H. (2016). The interactive effect on injury severity of driver-vehicle units in two-vehicle crashes. Journal of Safety Research, 59, 105–111. doi:10.1016/j.jsr.2016.10.005.
Van Beeck, E. F., Borsboom, G. J. J., & Mackenbach, J. P. (2000). Economic development and traffic accident mortality in the industrialized world, 1962-1990. International Journal of Epidemiology, 29(3), 503–509. doi:10.1093/intjepid/29.3.503.
Abellán, J., López, G., & De Oña, J. (2013). Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications, 40(15), 6047–6054. doi:10.1016/j.eswa.2013.05.027.
Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys and Tutorials, 18(2), 1153–1176. doi:10.1109/COMST.2015.2494502.
Zou, Q., Zeng, J., Cao, L., & Ji, R. (2016). A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 173, 346–354. doi:10.1016/j.neucom.2014.12.123.
Yu, Z., Haghighat, F., & Fung, B. C. M. (2016). Advances and challenges in building engineering and data mining applications for energy-efficient communities. Sustainable Cities and Society, 25, 33–38. doi:10.1016/j.scs.2015.12.001.
Ahmed, A. B. E. D., & Elaraby, I. S. (2014). Data Mining: A prediction for Student’s Performance Using Classification Method. World Journal of Computer Application and Technology, 2(2), 43–47. doi:10.13189/wjcat.2014.020203.
Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. doi:10.1016/j.aci.2014.10.001.
Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717–727. doi:10.1016/S0731-7085(99)00272-1.
Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. doi:10.1016/S1352-2310(97)00447-0.
West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11–12), 1131–1152. doi:10.1016/S0305-0548(99)00149-5.
Er, M. J., Wu, S., Lu, J., & Toh, H. L. (2002). Face recognition with radial basis function (RBF) neural networks. IEEE Transactions on Neural Networks, 13(3), 697–710. doi:10.1109/TNN.2002.1000134.
Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21(15), 3301–3307. doi:10.1093/bioinformatics/bti499.
Wijnen, W., & Stipdonk, H. (2016). Social costs of road crashes: An international analysis. Accident Analysis and Prevention, 94, 97–106. doi:10.1016/j.aap.2016.05.005.
Bambach, M. R., & Mitchell, R. J. (2015). Estimating the human recovery costs of seriously injured road crash casualties. Accident Analysis and Prevention, 85, 177–185. doi:10.1016/j.aap.2015.09.013.
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268. doi:10.1016/j.eswa.2014.07.040.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. doi:10.1016/j.ipm.2009.03.002.
Maas, A. I. R., Hukkelhoven, C. W. P. M., Marshall, L. F., & Steyerberg, E. W. (2005). Prediction of outcome in traumatic brain injury with computed tomographic characteristics: A comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery, 57(6), 1173–1181. doi:10.1227/01.NEU.0000186013.63046.6B.
Guha, R., Ghosh, M., Mutsuddi, S., Sarkar, R., & Mirjalili, S. (2020). Embedded chaotic whale survival algorithm for filter–wrapper feature selection. Soft Computing, 24(17), 12821–12843. doi:10.1007/s00500-020-05183-1.
Ardakani, S. P., Liang, X., Mengistu, K. T., So, R. S., Wei, X., He, B., & Cheshmehzangi, A. (2023). Road Car Accident Prediction Using a Machine-Learning-Enabled Data Analysis. Sustainability (Switzerland), 15(7), 5939. doi:10.3390/su15075939.
Ding, T., Zhang, L., Xi, J., Li, Y., Zheng, L., & Zhang, K. (2023). Bus Fleet Accident Prediction Based on Violation Data: Considering the Binding Nature of Safety Violations and Service Violations. Sustainability (Switzerland), 15(4), 3520. doi:10.3390/su15043520.
Wang, S., Changshun, Y., & Yong, S. (2023). A Review of Road Traffic Accident Prediction Methods. American Journal of Management Science and Engineering. doi:10.11648/j.ajmse.20230803.12.
Almanie, T. (2023). Quantitative Study of Traffic Accident Prediction Models: A Case Study of Virginia Accidents. The International Journal of Advanced Networking and Applications, 14(05), 5582–5589. doi:10.35444/ijana.2023.14501.
Khabiri, M. M., Ghahfarokhi, F. M., Sarfaraz, S., & Anaie, H. M. (2022). Application of Data Mining Algorithm To Investigate the Effect of Intelligent Transportation Systems on Road Accidents Reduction By Decision Tree. Communications - Scientific Letters of the University of Žilina, 24(2), F36–F45. doi:10.26552/com.C.2022.2.F36-F45.
DOI: 10.28991/HIJ-2024-05-01-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Athapol Ruangkanjanases, Ornlatcha Sivarak, Zi-Jie Weng, Asif Khan, Shih-Chih Chen