Students’ Flow Experience of Using AI-Powered Online English Learning Platforms

Chang-Hong Wu, Wei-Shang Fan


Objectives: This research aims to explain the impact of flow’s antecedents on flow experience. Furthermore, this research explores the intention of students to continue using online AI-powered English learning platforms. Methodology: This study gathered data from 300 online students enrolled in AI-powered English learning platforms in Taiwan, with data collection facilitated by a research company in the country. Findings: According to the findings, flow was significantly associated with continuous intention. In terms of antecedents of flow, information quality, service support quality, and intrinsic motivation were significant, whereas confirmation, service quality, and instructor quality were not significant. Flow was found to have significant associations with perceived usefulness and satisfaction. Furthermore, confirmation significantly impacted perceived usefulness and satisfaction. Moreover, perceived usefulness was significantly associated with satisfaction but had no association with continuous intention. Lastly, both intrinsic motivation and satisfaction were associated with continuous intention. Novelty/Improvement:This research delves into the dynamic interplay between students' experiences and the adoption of AI-powered online English learning platforms. The study employed a comprehensive framework, including flow, a technology acceptance model, motivation, and an expectation confirmation model.


Doi: 10.28991/HIJ-2024-05-02-011

Full Text: PDF


Flow; Technology Acceptance Model; Expectation Confirmation Model; AI-Powered Platforms; Online English Learning; Intrinsic Motivation.


Jeon, J., Lee, S., & Choe, H. (2023). Beyond ChatGPT: A conceptual framework and systematic review of speech-recognition chatbots for language learning. Computers and Education, 206, 104898. doi:10.1016/j.compedu.2023.104898.

Lin, C. J., & Mubarok, H. (2021). Learning Analytics for Investigating the Mind Map-Guided AI Chatbot Approach in an EFL Flipped Speaking Classroom. In Educational Technology and Society (Vol. 24, Issue 4). Educational Technology & Society.

Dizon, G., & Tang, D. (2020). Intelligent personal assistants for autonomous second language learning: An investigation of Alexa. JALT CALL Journal, 16(2), 107–120. doi:10.29140/jaltcall.v16n2.273.

Moussalli, S., & Cardoso, W. (2020). Intelligent personal assistants: can they understand and be understood by accented L2 learners? Computer Assisted Language Learning, 33(8), 865–890. doi:10.1080/09588221.2019.1595664.

Wang, X., Liu, Q., Pang, H., Tan, S. C., Lei, J., Wallace, M. P., & Li, L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers and Education, 194, 104703. doi:10.1016/j.compedu.2022.104703.

Niu, C., Li, X., Dai, R., & Wang, Z. (2022). Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Research, 216, 118299. doi:10.1016/j.watres.2022.118299.

Shu, X., & Gu, X. (2023). An Empirical Study of a Smart Education Model Enabled by the Edu-Metaverse to Enhance Better Learning Outcomes for Students. Systems, 11(2), 75. doi:10.3390/systems11020075.

Liu, G., Wang, X., Gao, N., & Hu, H. (2021). From Virtual Reality to Metaverse: A New Direction of Online Education. Modern Distance Education Research, 33(6), 12–22.

Csikszentmihalyi, M. (2014). Flow and Education. In: Applications of Flow in Human Development and Education: The collected works of Mihaly Csikszentmihalyi, 129-151. doi:10.1007/978-94-017-9094-9_6.

Yang, X. (2024). Mobile learning application characteristics and learners’ continuance intentions: The role of flow experience. Education and Information Technologies, 29(2), 2259–2275. doi:10.1007/s10639-023-11910-6.

Zhao, H., & Khan, A. (2022). The Students’ Flow Experience with the Continuous Intention of Using Online English Platforms. Frontiers in Psychology, 12, 807084–807084. doi:10.3389/fpsyg.2021.807084.

Wang, H., Ding, J., Akram, U., Yue, X., & Chen, Y. (2021). An empirical study on the impact of e-commerce live features on consumers’ purchase intention: From the perspective of flow experience and social presence. Information (Switzerland), 12(8), 324. doi:10.3390/info12080324.

Wang, H., & Lee, K. (2020). Getting in the flow together: The role of social presence, perceived enjoyment and concentration on sustainable use intention of mobile social network game. Sustainability (Switzerland), 12(17), 6853. doi:10.3390/SU12176853.

Chen, C. C., & Lin, Y. C. (2018). What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telematics and Informatics, 35(1), 293–303. doi:10.1016/j.tele.2017.12.003.

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. doi:10.1080/07421222.2003.11045748.

Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human Computer Studies, 64(8), 683–696. doi:10.1016/j.ijhcs.2006.01.003.

Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism Management, 29(3), 500–513. doi:10.1016/j.tourman.2007.05.016.

Ozkan, S., & Koseler, R. (2009). Multi-dimensional evaluation of E-learning systems in the higher education context: An empirical investigation of a computer literacy course. Proceedings - Frontiers in Education Conference, FIE, 53(4), 1285–1296. doi:10.1109/FIE.2009.5350590.

Cao, Y., Qu, X., & Chen, X. (2024). Metaverse application, flow experience, and Gen-Zers’ participation intention of intangible cultural heritage communication. Data Science and Management, 7(2), 144–153. doi:10.1016/j.dsm.2023.12.004.

Cheng, Y. M. (2014). Extending the expectation-confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information Technology and People, 27(3), 230-258. doi:10.1108/ITP-01-2013-0024.

Oxford, R., & Shearin, J. (1994). Language Learning Motivation: Expanding the Theoretical Framework. The Modern Language Journal, 78(1), 12–28. doi:10.1111/j.1540-4781.1994.tb02011.x.

Schunk, D. H., Pintrich, P. R., & Meece, J. L. (2014). Motivation in education: Theory, Research, and Applications. Pearson Education, New Jersey, United States.

De Brabander, C. J., & Martens, R. L. (2014). Towards a unified theory of task-specific motivation. Educational Research Review, 11, 27-44. doi:10.1016/j.edurev.2013.11.001.

Dörnyei, Z., & Ushioda, E. (2021). Teaching and Researching Motivation. Routledge, London, United Kingdom. doi:10.4324/9781351006743.

Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109–134. doi:10.1016/0092-6566(85)90023-6.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 54–67. doi:10.1006/ceps.1999.1020.

Waterman, A. S., & Schwartz, S. J. (2024). Identity Contributions to a Life Well-Lived: A Study of the Relationship of Eudaimonic Well-Being to Intrinsic Motivation for Identity-Related Activities. Identity, 24(1), 1–15. doi:10.1080/15283488.2023.2233990.

Boyd, F. B. (2002). Motivation to continue: Enhancing literacy learning for struggling readers and writers. Reading and Writing Quarterly, 18(3), 257–277. doi:10.1080/07487630290061818.

Hong, J. C., Hwang, M. Y., Tai, K. H., & Lin, P. H. (2017). Intrinsic motivation of Chinese learning in predicting online learning self-efficacy and flow experience relevant to students’ learning progress. Computer Assisted Language Learning, 30(6), 552–574. doi:10.1080/09588221.2017.1329215.

Chen, X., Fang, S., Li, Y., & Wang, H. (2019). Does identification influence continuous e-commerce consumption? The mediating role of intrinsic motivations. Sustainability (Switzerland), 11(7), 1944. doi:10.3390/su11071944.

Raman, A., Thannimalai, R., Rathakrishnan, M., & Ismail, S. N. (2022). Investigating the influence of intrinsic motivation on behavioral intention and actual use of technology in moodle platforms. International Journal of Instruction, 15(1), 1003–1024. doi:10.29333/iji.2022.15157a.

Cai, J., Yang, H. H., Gong, D., MacLeod, J., & Zhu, S. (2019). Understanding the continued use of flipped classroom instruction: a personal beliefs model in Chinese higher education. Journal of Computing in Higher Education, 31(1), 137–155. doi:10.1007/s12528-018-9196-y.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. doi:10.2307/249008.

Deng, G., & Zhang, J. (2023). Technological pedagogical content ethical knowledge (TPCEK): The development of an assessment instrument for pre-service teachers. Computers and Education, 197(2), 123–149. doi:10.1016/j.compedu.2023.104740.

Fathema, N., Shannon, D., & Ross, M. (2015). Expanding the Technology Acceptance Model (TAM) to Examine Faculty Use of Learning Management Systems (LMSs) In Higher Education Institutions. Journal of Online Learning and Teaching, 11(2), 210–233.

Ashfaq, M., Yun, J., Waheed, A., Khan, M. S., & Farrukh, M. (2019). Customers’ Expectation, Satisfaction, and Repurchase Intention of Used Products Online: Empirical Evidence from China. SAGE Open, 9(2), 2158244019846212. doi:10.1177/2158244019846212.

Al-Maroof, R. S., Alhumaid, K., & Salloum, S. (2021). The continuous intention to use e-learning, from two different perspectives. Education Sciences, 11(1), 1–20. doi:10.3390/educsci11010006.

Liu, Z., Yu, P., Liu, J., Pi, Z., & Cui, W. (2023). How do students’ self-regulation skills affect learning satisfaction and continuous intention within desktop-based virtual reality? A structural equation modelling approach. British Journal of Educational Technology, 54(3), 667–685. doi:10.1111/bjet.13278.

Hsu, C. L., & Lin, J. C. C. (2023). The effects of gratifications, flow and satisfaction on the usage of livestreaming services. Library Hi Tech, 41(3), 729–748. doi:10.1108/LHT-02-2021-0069.

Alturki, U., & Aldraiweesh, A. (2022). Adoption of Google Meet by Postgraduate Students: The Role of Task Technology Fit and the TAM Model. Sustainability (Switzerland), 14(23), 15765. doi:10.3390/su142315765.

Gupta, A., Dhiman, N., Yousaf, A., & Arora, N. (2021). Social comparison and continuance intention of smart fitness wearables: an extended expectation confirmation theory perspective. Behaviour and Information Technology, 40(13), 1341–1354. doi:10.1080/0144929X.2020.1748715.

Pelet, J. É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information and Management, 54(1), 115–128. doi:10.1016/

Park, G., Chen, F., & Cheng, L. (2021). A study on the millennials usage behavior of social network services: Effects of motivation, density, and centrality on continuous intention to use. Sustainability (Switzerland), 13(5), 1–21. doi:10.3390/su13052680.

Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31(1), 294–304. doi:10.1016/j.chb.2013.10.046.

Campbell, C., Ferraro, C., & Sands, S. (2014). Segmenting consumer reactions to social network marketing. European Journal of Marketing, 48(3–4), 432–452. doi:10.1108/EJM-03-2012-0165.

Hwang, H. S., & Cho, J. (2018). Why Instagram? Intention to continue using Instagram among Korean college students. Social Behavior and Personality, 46(8), 1305–1315. doi:10.2224/SBP.6961.

Halilovic, S., & Cicic, M. (2013). Antecedents of information systems user behaviour-extended expectation-confirmation model. Behaviour and Information Technology, 32(4), 359–370. doi:10.1080/0144929X.2011.554575.

Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers and Education, 54(2), 506–516. doi:10.1016/j.compedu.2009.09.002.

Sørebø, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Computers and Education, 53(4), 1177–1187. doi:10.1016/j.compedu.2009.06.001.

Tseng, A. H., & Hsia, J. W. (2008). The impact of internal locus of control on perceived usefulness and perceived ease of use in e-learning: An extension of the technology acceptance model. Proceedings of the 2008 International Conference on Cyberworlds, CW 2008, 42(2), 815–819. doi:10.1109/CW.2008.109.

Masri, N. W., You, J. J., Ruangkanjanases, A., Chen, S. C., & Pan, C. I. (2020). Assessing the effects of information system quality and relationship quality on continuance intention in e-tourism. International Journal of Environmental Research and Public Health, 17(1), 174. doi:10.3390/ijerph17010174.

Hariguna, T., Lai, M. T., Hung, C. W., & Chen, S. C. (2017). Understanding information system quality on public e-government service intention: An empirical study. International Journal of Innovation and Sustainable Development, 11(2–3), 271–290. doi:10.1504/IJISD.2017.083290.

Choi, D. H., Kim, J., & Kim, S. H. (2007). ERP training with a web-based electronic learning system: The flow theory perspective. International Journal of Human Computer Studies, 65(3), 223–243. doi:10.1016/j.ijhcs.2006.10.002.

Cho, V., Cheng, T. C. E., & Lai, W. M. J. (2009). The role of perceived user-interface design in continued usage intention of self-paced e-learning tools. Computers and Education, 53(2), 216–227. doi:10.1016/j.compedu.2009.01.014.

Young Choi, S., Lee, H., & Yoo, Y. (2010). The impact of information technology and transactive memory systems on knowledge sharing, application, and team performance: A field study. MIS Quarterly: Management Information Systems, 34(4), 833–854. doi:10.2307/25750708.

Ibáñez, M. B., Di-Serio, Á., Villarán-Molina, D., & Delgado-Kloos, C. (2016). Support for Augmented Reality Simulation Systems: The Effects of Scaffolding on Learning Outcomes and Behavior Patterns. IEEE Transactions on Learning Technologies, 9(1), 46–56. doi:10.1109/TLT.2015.2445761.

Gardner, R. C. (2020). The socio-educational model of second language acquisition. The Palgrave Handbook of Motivation for Language Learning, 6(1), 21–37. doi:10.1007/978-3-030-28380-3_2.

Filsecker, M., & Hickey, D. T. (2014). A multilevel analysis of the effects of external rewards on elementary students’ motivation, engagement and learning in an educational game. Computers and Education, 75, 136–148. doi:10.1016/j.compedu.2014.02.008.

Khang, H., Kim, J. K., & Kim, Y. (2013). Self-traits and motivations as antecedents of digital media flow and addiction: The Internet, mobile phones, and video games. Computers in Human Behavior, 29(6), 2416–2424. doi:10.1016/j.chb.2013.05.027.

Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly: Management Information Systems, 24(4), 665–694. doi:10.2307/3250951.

Bem, D. J. (1972). Self-perception theory. Advances in experimental social psychology: Academic Press, Volume 6, 1-62.

Khan, S., & Khan, A. (2020). Consumer E-Loyalty for E-Grocery Shopping in a Metro City of India. International Journal of E-Adoption, 12(2), 16–33. doi:10.4018/ijea.2020070102.

Hyun, H., Thavisay, T., & Lee, S. H. (2022). Enhancing the role of flow experience in social media usage and its impact on shopping. Journal of Retailing and Consumer Services, 65, 102492. doi:10.1016/j.jretconser.2021.102492.

Mahfouz, A. Y., Joonas, K., & Opara, E. U. (2020). An overview of and factor analytic approach to flow theory in online contexts. Technology in Society, 61, 101228. doi:10.1016/j.techsoc.2020.101228.

Agung Purwanto, Nurahman, & Andy Ismail. (2020). Exploring Consumers’ Acceptance of E-Marketplace Using Tam and Flow Theory. Indonesian Journal of Applied Research (IJAR), 1(3), 170–182. doi:10.30997/ijar.v1i3.76.

Ali, F. (2016). Hotel website quality, perceived flow, customer satisfaction and purchase intention. Journal of Hospitality and Tourism Technology, 7(2), 213–228. doi:10.1108/JHTT-02-2016-0010.

Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). The impact of website quality on customer satisfaction and purchase intention: Perceived playfulness and perceived flow as mediators. Information Systems and E-Business Management, 10(4), 549–570. doi:10.1007/s10257-011-0181-5.

Panigrahi, R., Srivastava, P. R., & Sharma, D. (2018). Online learning: Adoption, continuance, and learning outcome—A review of literature. International Journal of Information Management, 43, 1–14. doi:10.1016/j.ijinfomgt.2018.05.005.

Wu, I. L., Chiu, M. L., & Chen, K. W. (2020). Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. International Journal of Information Management, 52, 102099. doi:10.1016/j.ijinfomgt.2020.102099.

Hsu, M. H., Chang, C. M., Chu, K. K., & Lee, Y. J. (2014). Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean is success model and trust. Computers in Human Behavior, 36, 234–245. doi:10.1016/j.chb.2014.03.065.

Rose, S., Clark, M., Samouel, P., & Hair, N. (2012). Online Customer Experience in e-Retailing: An empirical model of Antecedents and Outcomes. Journal of Retailing, 88(2), 308–322. doi:10.1016/j.jretai.2012.03.001.

Bhattacherjee, A. (2017). Understanding information systems continuance Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 2017148.

Hsu, C. L., & Lin, J. C. C. (2015). What drives purchase intention for paid mobile apps?-An expectation confirmation model with perceived value. Electronic Commerce Research and Applications, 14(1), 46–57. doi:10.1016/j.elerap.2014.11.003.

Kang, Y. S., Hong, S., & Lee, H. (2009). Exploring continued online service usage behavior: The roles of self-image congruity and regret. Computers in Human Behavior, 25(1), 111–122. doi:10.1016/j.chb.2008.07.009.

Lu, C. C., Wu, I. L., & Hsiao, W. H. (2019). Developing customer product loyalty through mobile advertising: Affective and cognitive perspectives. International Journal of Information Management, 47, 101–111. doi:10.1016/j.ijinfomgt.2018.12.020.

Tsao, W. Y. (2013). Application of Expectation Confirmation Theory to Consumers’ Impulsive Purchase Behavior for Products Promoted by Showgirls in Exhibits. Journal of Promotion Management, 19(3), 283–298. doi:10.1080/10496491.2013.770811.

Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 17(4), 460. doi:10.2307/3150499.

Li, C. Y., & Ku, Y. C. (2018). The power of a thumbs-up: Will e-commerce switch to social commerce? Information and Management, 55(3), 340–357. doi:10.1016/

Luo, M. M., & Chea, S. (2018). Cognitive appraisal of incident handling, affects, and post-adoption behaviors: A test of affective events theory. International Journal of Information Management, 40, 120–131. doi:10.1016/j.ijinfomgt.2018.01.014.

Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information and Management, 42(5), 683–693. doi:10.1016/

Charbonneau, D., Barling, J., & Kelloway, E. K. (2001). Transformational leadership and sports performance: The mediating role of intrinsic motivation. Journal of Applied Social Psychology, 31(7), 1521–1534. doi:10.1111/j.1559-1816.2001.tb02686.x.

Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research Journal, 20(1), 53–66. doi:10.1080/10400410701841955.

Zapata-Phelan, C. P., Colquitt, J. A., Scott, B. A., & Livingston, B. (2009). Procedural justice, interactional justice, and task performance: The mediating role of intrinsic motivation. Organizational Behavior and Human Decision Processes, 108(1), 93–105. doi:10.1016/j.obhdp.2008.08.001.

Fernet, C., Austin, S., Trépanier, S. G., & Dussault, M. (2013). How do job characteristics contribute to burnout? Exploring the distinct mediating roles of perceived autonomy, competence, and relatedness. European Journal of Work and Organizational Psychology, 22(2), 123–137. doi:10.1080/1359432X.2011.632161.

Chen, K. C., & Jang, S. J. (2010). Motivation in online learning: Testing a model of self-determination theory. Computers in Human Behavior, 26(4), 741–752. doi:10.1016/j.chb.2010.01.011.

Mehrabian, A., & Russell, J. A. (1974). An Approach to Environmental Psychology. MIT Press, Massachusetts, United States.

Jacoby, J. (2002). Stimulus-organism-response reconsidered: An evolutionary step in modeling (consumer) behavior. Journal of Consumer Psychology, 12(1), 51–57. doi:10.1207/153276602753338081.

Kim, J., & Lennon, S. J. (2013). Effects of reputation and website quality on online consumers’ emotion, perceived risk and purchase intention: Based on the stimulus-organism-response model. Journal of Research in Interactive Marketing, 7(1), 33–56. doi:10.1108/17505931311316734.

Sohaib, O., Kang, K., & Nurunnabi, M. (2019). Gender-based itrust in e-commerce: The moderating role of cognitive innovativeness. Sustainability (Switzerland), 11(1), 175. doi:10.3390/su11010175.

Bearden, W. O., & Teel, J. E. (1983). Selected Determinants of Consumer Satisfaction and Complaint Reports. Journal of Marketing Research, 20(1), 21. doi:10.2307/3151408.

Oliver, R. L. (1993). Cognitive, Affective, and Attribute Bases of the Satisfaction Response. Journal of Consumer Research, 20(3), 418. doi:10.1086/209358.

Szymanski, D. M., & Henard, D. H. (2001). Customer satisfaction: A meta-analysis of the empirical evidence. Journal of the Academy of Marketing Science, 29(1), 16–35.

Xu, Y., Wang, Y., Khan, A., & Zhao, R. (2021). Consumer Flow Experience of Senior Citizens in Using Social Media for Online Shopping. Frontiers in Psychology, 12, 12. doi:10.3389/fpsyg.2021.732104.

Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204. doi:10.1002/(sici)1097-0266(199902)20:2<195::aid-smj13>;2-7.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS Quarterly: Management Information Systems, 31(4), 623–656. doi:10.2307/25148814.

Chin, W. W., Marcolin, B. L., & Newsted, P. R. (1996). a Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and Voice Mail Emotion/Adoption Study. Proceedings of the 17th International Conference on Information Systems, ICIS 1996, 14(2), 21–41.

Hongsuchon, T., Rahardja, U., Khan, A., Wu, T. H., Hung, C. W., Chang, R. H., Hsu, C. H., & Chen, S. C. (2023). Brand Experience on Brand Attachment: The Role of Interpersonal Interaction, Feedback, and Advocacy. Emerging Science Journal, 7(4), 1232–1246. doi:10.28991/ESJ-2023-07-04-014.

Guo, Z., Liu, G., Liu, Z., & Khan, A. (2023). Evaluating the Determinants of Young Runners’ Continuance Intentions toward Wearable Devices. HighTech and Innovation Journal, 4(4), 720–738. doi:10.28991/HIJ-2023-04-04-02.

Khan, A., Chen, C. C., Suanpong, K., Ruangkanjanases, A., Kittikowit, S., & Chen, S. C. (2021). The impact of CSR on sustainable innovation ambidexterity: The mediating role of sustainable supply chain management and second-order social capital. Sustainability (Switzerland), 13(21), 12160. doi:10.3390/su132112160.

Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing Construct Validity in Organizational Research. Administrative Science Quarterly, 36(3), 421. doi:10.2307/2393203.

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48(6), 1273–1296. doi:10.1007/s11165-016-9602-2.

Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. doi:10.1108/EBR-10-2013-0128.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.

Ab Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics: Conference Series, 890(1). doi:10.1088/1742-6596/890/1/012163.

Chen, C. C., Khan, A., Hongsuchon, T., Ruangkanjanases, A., Chen, Y. T., Sivarak, O., & Chen, S. C. (2021). The role of corporate social responsibility and corporate image in times of crisis: The mediating role of customer trust. International Journal of Environmental Research and Public Health, 18(16), 8275. doi:10.3390/ijerph18168275.

Khan, A., Chen, L. R., & Hung, C. Y. (2021). The role of corporate social responsibility in supporting second-order social capital and sustainable innovation ambidexterity. Sustainability (Switzerland), 13(13), 6994. doi:10.3390/su13136994.

Khan, A., Chen, C. C., Lu, K. H., Wibowo, A., Chen, S. C., & Ruangkanjanases, A. (2021). Supply chain ambidexterity and green scm: Moderating role of network capabilities. Sustainability (Switzerland), 13(11), 5974. doi:10.3390/su13115974.

Kong, S. C., & Wang, Y. Q. (2021). The influence of parental support and perceived usefulness on students’ learning motivation and flow experience in visual programming: Investigation from a parent perspective. British Journal of Educational Technology, 52(4), 1749–1770. doi:10.1111/bjet.13071.

Harianto, E. F. E., & Ellyawati, J. (2023). The Influence of Perceived Usefulness, Trust, and Risk on Loyalty in the TikTok Shop: Test of Consumer Satisfaction as a Mediation Variable. Journal of Entrepreneurship & Business, 4(1), 13–23. doi:10.24123/jeb.v4i1.5390.

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26–29. doi:10.1108/LHTN-01-2023-0009.

Kim, H., Kim, S. E., Park, K., & Tennessee, S. (2023). Exploring the role of flow experience and telepresence in virtual reality (VR) concerts. Journal of Travel and Tourism Marketing, 40(7), 568–582. doi:10.1080/10548408.2023.2276437.

Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms. Education and Information Technologies, 28(11), 15381–15413. doi:10.1007/s10639-023-11816-3.

Cheng, S. I., Chen, S. C., & Yen, D. C. (2015). Continuance intention of E-portfolio system: A confirmatory and multigroup invariance analysis of technology acceptance model. Computer Standards and Interfaces, 42, 17–23. doi:10.1016/j.csi.2015.03.002.

Chen, S. C., Liu, M. L., & Lin, C. P. (2013). Integrating technology readiness into the expectation-confirmation model: An empirical study of mobile services. Cyberpsychology, Behavior, and Social Networking, 16(8), 604–612. doi:10.1089/cyber.2012.0606.

Liu, R., Wang, L., Koszalka, T. A., & Wan, K. (2022). Effects of immersive virtual reality classrooms on students’ academic achievement, motivation and cognitive load in science lessons. Journal of Computer Assisted Learning, 38(5), 1422–1433. doi:10.1111/jcal.12688.

Almaiah, M. A., Al-Otaibi, S., Lutfi, A., Almomani, O., Awajan, A., Alsaaidah, A., Alrawad, M., & Awad, A. B. (2022). Employing the TAM Model to Investigate the Readiness of M-Learning System Usage Using SEM Technique. Electronics (Switzerland), 11(8), 1259. doi:10.3390/electronics11081259.

Tao, Y. T., Lin, M. Der, & Khan, A. (2022). The impact of CSR on green purchase intention: Empirical evidence from the green building Industries in Taiwan. Frontiers in Psychology, 13, 13. doi:10.3389/fpsyg.2022.1055505.

Rahardja, U., Chen, S. C., Lin, Y. C., Tsai, T. C., Aini, Q., Khan, A., Oganda, F. P., Dewi, E. R., Cho, Y. C., & Hsu, C. H. (2023). Evaluating the Mediating Mechanism of Perceived Trust and Risk toward Cryptocurrency: An Empirical Research. SAGE Open, 13(4), 21582440231217856. doi:10.1177/21582440231217854.

Mamun, M. R. Al, Senn, W. D., Peak, D. A., Prybutok, V. R., & Torres, R. A. (2020). Emotional Satisfaction and IS Continuance Behavior: Reshaping the Expectation-Confirmation Model. International Journal of Human-Computer Interaction, 36(15), 1437–1446. doi:10.1080/10447318.2020.1752478.

Baker-Eveleth, L., & Stone, R. W. (2015). Usability, expectation, confirmation, and continuance intentions to use electronic textbooks. Behaviour and Information Technology, 34(10), 992–1004. doi:10.1080/0144929X.2015.1039061.

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., … Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. doi:10.1016/j.ijinfomgt.2023.102642.

Full Text: PDF

DOI: 10.28991/HIJ-2024-05-02-011


  • There are currently no refbacks.

Copyright (c) 2024 CHANG-HONG WU, Wei-Shang Fan