The Development and Evaluation of Homogenously Weighted Moving Average Control Chart based on an Autoregressive Process

Rapin Sunthornwat, Saowanit Sukparungsee, Yupaporn Areepong


This research aims to investigate a Homogenously Weighted Moving Average (HWMA) control chart for detecting minor and moderate shifts in the process mean. A mathematical model for the explicit formulae of the average run length (ARL) of the HWMA control chart based on the autoregressive (AR) process is presented. The efficacy of the HWMA control chart is evaluated based on the average run length, the standard deviation of run length (SDRL), and the median run length (MRL). As illustrations of the design and implementation of the HWMA control chart, numerical examples are provided. In numerous instances, a comparative analysis of the HWMA control chart relative to the Extended Exponentially Weighted Moving Average (Extended EWMA) and cumulative sum (CUSUM) control charts with mean process shifts is performed in detail. Additionally, the relative mean index (RMI), the average extra quadratic loss (AEQL), and the performance comparison index (PCI) are utilized to evaluate the performance of control charts. For various shift sizes, the HWMA control chart is superior to the Extended EWMA and CUSUM control charts. This study applies empirical data from the area of economics to validate the explicit formula of ARL values for the HWMA control chart.


Doi: 10.28991/HIJ-2024-05-01-02

Full Text: PDF


Integral Equation; Average Run Length; Autoregressive Process.


Shewhart, W. A. (1932). The Economic Control of Quality of Manufactured Product. Journal of the Royal Statistical Society, 95(3), 546-549. doi:10.2307/2342413.

Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100. doi:10.2307/2333009.

Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239. doi:10.2307/1266443.

Crowder, S. V. (1987). A simple method for studying run – length distributions of exponentially weighted moving average charts. Technometrics, 29(4), 401–407. doi:10.1080/00401706.1987.10488267.

Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics, 32(1), 1–12. doi:10.1080/00401706.1990.10484583.

Naveed, M., Azam, M., Khan, N., & Aslam, M. (2018). Design of a Control Chart Using Extended EWMA Statistic. Technologies, 6(4), 108. doi:10.3390/technologies6040108.

Abbas, N. (2018). Homogeneously weighted moving average control chart with an application in substrate manufacturing process. Computers and Industrial Engineering, 120, 460–470. doi:10.1016/j.cie.2018.05.009.

Riaz, M., Ahmad, S., Mahmood, T., & Abbas, N. (2022). On Reassessment of the HWMA Chart for Process Monitoring. Processes, 10(6). doi:10.3390/pr10061129.

Fellag, H., & Ibazizen, M. (2001). Estimation of the first-order autoregressive model with contaminated exponential white noise. Journal of Mathematical Sciences, 106(1), 2652–2656. doi:10.1023/A:1011318515549.

Champ, C. W., & Ritrdon, S. E. (1991). A Comparison of the Markov Chain and the Integral Equation Approaches for Evaluating the Run Length Distribution of Quality Control Charts. Communications in Statistics - Simulation and Computation, 20(1), 191–204. doi:10.1080/03610919108812948.

Sukparungsee, S., & Areepong, Y. (2017). An explicit analytical solution of the average run length of an exponentially weighted moving average control chart using an autoregressive model. Chiang Mai Journal of Science, 44(3), 1172–1179.

Sunthornwat, R., Areepong, Y., & Sukparungsee, S. (2018). Average run length with a practical investigation of estimating parameters of the EWMA control chart on the long memory AFRIMA process. Thailand Statistician, 16(2), 190–202.

Peerajit, W., Areepong, Y., & Sukparungsee, S. (2018). Numerical integral equation method for ARL of CUSUM chart for long-memory process with non-seasonal and seasonal ARFIMA models. Thailand Statistician, 16(1), 26–37.

Supharakonsakun, Y., Areepong, Y., & Sukparungsee, S. (2020). The exact solution of the average run length on a modified EWMA control chart for the first-order moving-average process. ScienceAsia, 46(2023), 109-118. doi:10.2306/scienceasia1513-1874.2020.015.

Supharakonsakun, Y. (2021). Statistical design for monitoring process mean of a modified EWMA control chart based on autocorrelated data. Walailak Journal of Science and Technology, 18(12), 19813. doi:10.48048/wjst.2021.19813.

Phanyaem, S. (2022). Explicit Formulas and Numerical Integral Equation of ARL for SARX(P,r)L Model Based on CUSUM Chart. Mathematics and Statistics, 10(1), 88–99. doi:10.13189/ms.2022.100107.

Petcharat, K. (2022). The Effectiveness of CUSUM Control Chart for Trend Stationary Seasonal Autocorrelated Data. Thailand Statistician, 20(2), 475–488.

Phanthuna, P., & Areepong, Y. (2022). Detection Sensitivity of a Modified EWMA Control Chart with a Time Series Model with Fractionality and Integration. Emerging Science Journal, 6(5), 1134–1152. doi:10.28991/ESJ-2022-06-05-015.

Peerajit, W., & Areepong, Y. (2023). Alternative to Detecting Changes in the Mean of an Autoregressive Fractionally Integrated Process with Exponential White Noise Running on the Modified EWMA Control Chart. Processes, 11(2), 503. doi:10.3390/pr11020503.

Silpakob, K., Areepong, Y., Sukparungsee, S., & Sunthornwat, R. (2023). A New Modified EWMA Control Chart for Monitoring Processes Involving Autocorrelated Data. Intelligent Automation and Soft Computing, 36(1), 281–298. doi:10.32604/iasc.2023.032487.

Peerajit, W. (2023). Developing Average Run Length for Monitoring Changes in the Mean on the Presence of Long Memory under Seasonal Fractionally Integrated MAX Model. Mathematics and Statistics, 11(1), 34–50. doi:10.13189/ms.2023.110105.

Karoon, K., Areepong, Y., & Sukparungsee, S. (2023). Trend Autoregressive Model Exact Run Length Evaluation on a Two-Sided Extended EWMA Chart. Computer Systems Science and Engineering, 44(2), 1143–1160. doi:10.32604/csse.2023.025420.

Karoon, K., Areepong, Y., & Sukparungsee, S. (2023). On the Performance of the Extended EWMA Control Chart for Monitoring Process Mean Based on Autocorrelated Data. Applied Science and Engineering Progress, 16(4), 6599. doi:10.14416/j.asep.2023.01.004.

Peerajit, W. (2023). Statistical Design of a One-sided CUSUM Control Chart to Detect a Mean Shift in a FIMAX Model with Underlying Exponential White Noise. Thailand Statistician, 21(2), 397–420.

Peerajit, W. (2023). Accurate Average Run Length Analysis for Detecting Changes in a Long-Memory Fractionally Integrated MAX Process Running on EWMA Control Chart. WSEAS Transactions on Mathematics, 22, 514–530. doi:10.37394/23206.2023.22.58.

Sunthornwat, R. (2023). Analytical Explicit Formulas of Average Run Length of Homogenously Weighted Moving Average Control Chart Based on a MAX Process. Symmetry, 15(12), 2112. doi:10.3390/sym15122112.

Brahmasrene, T., Huang, J. C., & Sissoko, Y. (2014). Crude oil prices and exchange rates: Causality, variance decomposition and impulse response. Energy Economics, 44, 407–412. doi:10.1016/j.eneco.2014.05.011.

Fonseca, A., Ferreira, P. H., Do Nascimento, D. C., Fiaccone, R., Ulloa-Correa, C., García-Piña, A., & Louzada, F. (2021). Water particles monitoring in the Atacama Desert: SPC approach based on proportional data. Axioms, 10(3), 154. doi:10.3390/axioms10030154.

Tang, A., Castagliola, P., Sun, J., & Hu, X. (2019). Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length. Quality Technology and Quantitative Management, 16(4), 439–458. doi:10.1080/16843703.2018.1460908.

Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2021). The triple exponentially weighted moving average control chart. Quality Technology and Quantitative Management, 18(3), 326–354. doi:10.1080/16843703.2020.1809063.

Full Text: PDF

DOI: 10.28991/HIJ-2024-05-01-02


  • There are currently no refbacks.

Copyright (c) 2024 Rapin Sunthornwat, Saowanit Sukparungsee, Yupaporn Areepong