5G Opportunities in the South Pacific: Leveraging Low-Band Spectrum for Socio-Economic Development

Satyanand Singh, Pragya Singh, Joanna Rosak-Szyrocka, Laszlo Vasa


This paper explores the potential for deployment of 5G communication in the South Pacific, with a particular focus on leveraging the low-band spectrum for socio-economic development. The purpose of this study is to assess the feasibility of deploying 5G infrastructure in the South Pacific region, analyze the socio-economic benefits it may bring, and propose strategies to maximize these benefits. The research methodology includes a comprehensive review of existing literature on 5G deployment strategies, the socio-economic impacts of telecommunications infrastructure, and case studies of similar initiatives in other regions. The findings show that the deployment of 5G technology using low-band spectrum has the potential to significantly improve connectivity, healthcare, education, and economic opportunities in the South Pacific. Additionally, the paper proposes innovative approaches to address challenges such as infrastructure development in remote areas and affordability for marginalized communities. This study contributes to existing literature by providing tailored recommendations for leveraging 5G technology to address socio-economic inequalities in the South Pacific, thereby contributing to the development of telecommunications infrastructure in the region. Provides a new perspective on the possibilities of structure.


Doi: 10.28991/HIJ-2024-05-02-020

Full Text: PDF


Sustainability; Healthcare; Education; Financial Inclusion; Wellbeing; Employment; Environment; Climate Change.


Hamadeh, N., Van Rompaey, C., Metreau, E., & Grace Eapen, S. (2022). Country classification Data sources, country classifications and aggregation methodology Data sources. The World Bank, Washington, D.C., United States. Available online: http://data.worldbank.org/about/country-classifications (accessed on May 2024).

Mehmood, R., Yigitcanlar, T., & Corchado, J. M. (2024). Smart Technologies for Sustainable Urban and Regional Development. Sustainability, 16(3), 1171. doi:10.3390/su16031171.

Liu, Z., & Li, J. (2023). Application of Unmanned Aerial Vehicles in Precision Agriculture. Agriculture (Switzerland), 13(7), 1375. doi:10.3390/agriculture13071375.

Bagula, M. F., Bagula, H., Mandava, M., Kakoko Lubamba, C., & Bagula, A. (2019). Cyber-healthcare Kiosks for healthcare support in developing countries. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST: Springer Verlag, 275, 185–198. doi:10.1007/978-3-030-16042-5_18.

Celesti, A., Fazio, M., Márquez, F. G., Glikson, A., Mauwa, H., Bagula, A., Celesti, F., & Villari, M. (2019). How to develop IoT cloud e-health systems based on fiware: A lesson learnt. Journal of Sensor and Actuator Networks, 8(1), 7. doi:10.3390/jsan8010007.

Ajayi, O. O., Bagula, A. B., & Maluleke, H. C. (2020). Africa 3: A continental network model to enable the African fourth industrial revolution. IEEE Access, 8, 196847–196864. doi:10.1109/ACCESS.2020.3034144.

Ajayi, O. O., Bagula, A. B., Maluleke, H. C., Gaffoor, Z., Jovanovic, N., & Pietersen, K. C. (2022). WaterNet: A Network for Monitoring and Assessing Water Quality for Drinking and Irrigation Purposes. IEEE Access, 10, 48318–48337. doi:10.1109/ACCESS.2022.3172274.

Huseien, G. F., & Shah, K. W. (2021). Potential applications of 5g network technology for climate change control: A scoping review of Singapore. Sustainability (Switzerland), 13(17), 9720. doi:10.3390/su13179720.

Biswas, S., Sanyal, A., Božanić, D., Puška, A., & Marinković, D. (2023). Critical Success Factors for 5G Technology Adaptation in Supply Chains. Sustainability (Switzerland), 15(6), 5539. doi:10.3390/su15065539.

Wijethilaka, S., & Liyanage, M. (2021). Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Communications Surveys and Tutorials, 23(2), 957–994. doi:10.1109/COMST.2021.3067807.

Agiwal, M., Kwon, H., Park, S., & Jin, H. (2021). A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access, 9, 16193–16210. doi:10.1109/ACCESS.2021.3052462.

Livermore, M., Chowdhury, M., Baumgartner, G., & Jeanlouis, J. (2023). Organizational Social Media Use and Community Social Capital: Disparities by Poverty and Racial Composition. Journal of Poverty, 27(5), 374–390. doi:10.1080/10875549.2022.2080030.

United Nations. (2023). Peace, Dignity and Equality on a Healthy Planet. United Nations, New York, United States.

UNDP. (2024). The SDGs in Action. In United Nations Development Programme. United Nation Development Programme, New York, United States.

Nature (2023). A decades-long decline in extreme poverty has gone into reverse — here’s how to fix things. (2023). Nature, 618(7967), 886–886. doi:10.1038/d41586-023-02098-3.

Gweshengwe, B., & Hassan, N. H. (2020). Defining the characteristics of poverty and their implications for poverty analysis. Cogent Social Sciences, 6(1), 1768669. doi:10.1080/23311886.2020.1768669.

Elavarasan, R. M., Pugazhendhi, R., Shafiullah, G. M., Kumar, N. M., Arif, M. T., Jamal, T., Chopra, S. S., & Dyduch, J. (2022). Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment. Environmental Science and Pollution Research, 29(23), 33957–33987. doi:10.1007/s11356-021-17793-9.

Moyer, J. D., Verhagen, W., Mapes, B., Bohl, D. K., Xiong, Y., Yang, V., McNeil, K., Solórzano, J., Irfan, M., Carter, C., & Hughes, B. B. (2022). How many people is the COVID-19 pandemic pushing into poverty? A long-term forecast to 2050 with alternative scenarios. PLoS ONE, 17(7 July), 0270846. doi:10.1371/journal.pone.0270846.

Medina Negrín, M. Á., & Galván Marrero, J. J. (2021). The new Education Law (LOMLOE) in the face of the Sustainable Development Goals of the 2030 Agenda and the challenge of Covid-19. Advances in Educational Supervision, 35, 140–182. doi:10.23824/ase.v0i35.709

F.A.O. (2021). World Livestock Transforming the livestock sector through the Sustainable Development Goals. Food and Agriculture Organization, Rome, Italy doi:10.4060/ca1201en.

Ali, N. (2021). UNDP in collaboration with the Ministry of Health to pilot Smart Anti-Epidemic Robotic Solutions in Kenya. United Nation Development Programme, New York, United States.

Sanders, C. K., & Scanlon, E. (2021). The Digital Divide Is a Human Rights Issue: Advancing Social Inclusion Through Social Work Advocacy. Journal of Human Rights and Social Work, 6(2), 130–143. doi:10.1007/s41134-020-00147-9.

Agarwal, R., Gopinath, G., Farrar, J., Hatchett, R., & Sands, P. (2022). A Global Strategy to Manage the Long-Term Risks of COVID-19. IMF Working Papers, 068, 1. doi:10.5089/9798400205996.001.

Alkholidi, A., Alsharabi, N. A., Hamam, H., & Alshammari, T. S. (2023). The 5G Wireless Technology and a Significant Economic Growth and Sustainable Development. International Conference on Smart Computing and Application, ICSCA 2023, 10087596. doi:10.1109/ICSCA57840.2023.10087596.

Gabriel, I., & Gauri, V. (2019). Towards a New Global Narrative for the Sustainable Development Goals. Sustainable Development Goals, 53–70. doi:10.1002/9781119541851.ch3.

Yarali, A. (2021). Intelligent Connectivity. Intelligent Connectivity, 133–151. doi:10.1002/9781119685265.ch7.

SDGs. (2023). Report of the UN Secretary General’s 10-Member-Group of High-level Representatives of Scientific Community, Private Sector and Civil Society in support of the Technology, Facilitation Mechanism. Science, Technology, and Innovation for the SDGs – Progress, Future vision, and Recommendations. Sustainable Development Goals, United Nation.

Park, K. R. (2022). Science, technology, and innovation in sustainable development cooperation: theories and practices in South Korea. International development cooperation of Japan and South Korea: New Strategies for an Uncertain World, 179-208.

Singh, S. (2023). 5G Enabled Network Technology Trends for Smart Healthcare Systems. 5G Wireless Communication System in Healthcare Informatics: CRC Press, 29–43. doi:10.1201/9781003368311-4.

Dangi, R., Lalwani, P., Choudhary, G., You, I., & Pau, G. (2022). Study and investigation on 5g technology: A systematic review. Sensors, 22(1), 26. doi:10.3390/s22010026.

Jichkar, R., Paraskar, S., Parteki, R., Ghosh, M., Deotale, T., Pathan, A. S., Bawankar, S., & P.thakare, L. (2023). 5G: An Emerging Technology and Its Advancement. In International Conference on Emerging Trends in Engineering and Technology, ICETET, 10151530. doi:10.1109/ICETET-SIP58143.2023.10151530.

Fowdur, T. P., Indoonundon, M., Hosany, M. A., Milovanovic, D., & Bojkovic, Z. (2022). Achieving Sustainable Development Goals Through Digital Infrastructure for Intelligent Connectivity. Lecture Notes on Data Engineering and Communications Technologies, 105, 3–26. doi:10.1007/978-3-030-90618-4_1.

Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access, 8, 23022–23040. doi:10.1109/ACCESS.2020.2970118.

Singh, S., Assaf Mansour, H., Agarwal, N., & Kumar, A. (2017). Speaker recognition system for limited speech data using high-level speaker specific features and support vector machines. International Journal of Applied Engineering Research 12(19), 8026–8033.

Khanh, Q. V., Hoai, N. V., Manh, L. D., Le, A. N., & Jeon, G. (2022). Wireless Communication Technologies for IoT in 5G: Vision, Applications, and Challenges. Wireless Communications and Mobile Computing, 3229294. doi:10.1155/2022/3229294.

Wang, Y. (2022). Development of the Digital Economy: A Case Study of 5G Technology. In Lecture Notes in Information Systems and Organisation, 54, 215–225. doi:10.1007/978-3-030-94617-3_16.

Dai, N. H. P., Ruiz, L., & Zoltan, R. (2021). 5G revolution: Challenges and opportunities. 21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Proceedings, 211–216. doi:10.1109/CINTI53070.2021.9668550.

Attaran, M., & Attaran, S. (2020). Digital Transformation and Economic Contributions of 5G Networks. International Journal of Enterprise Information Systems, 16(4), 58–79. doi:10.4018/IJEIS.2020100104.

Latif, S., Qadir, J., Farooq, S., & Imran, M. A. (2017). How 5G wireless (and Concomitant Technologies) will revolutionize healthcare? Future Internet, 9(4), 93. doi:10.3390/fi9040093.

Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., & He, Y. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, 180. doi:10.1016/j.compag.2020.105895.

Gohar, A., & Nencioni, G. (2021). The role of 5g technologies in a smart city: The case for intelligent transportation system. Sustainability (Switzerland), 13(9), 5188. doi:10.3390/su13095188.

Queiroz, D. M. de, Coelho, A. L. de F., Valente, D. S. M., & Schueller, J. K. (2020). Sensors applied to Digital Agriculture: A review. Revista Ciencia Agronomica, 51(5), 1–15. doi:10.5935/1806-6690.20200086.

Shehab, M. J., Kassem, I., Kutty, A. A., Kucukvar, M., Onat, N., & Khattab, T. (2022). 5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access, 10, 2987–3006. doi:10.1109/ACCESS.2021.3139436.

Sadio, M. (2008). The Determinants of Rice Import Demand in Senegal Approved by the Memory Committee. African Institute for Economic Development and Planning (IDEP), United Nation.

Singh, S., Assaf, M. H., Das, S. R., Biswas, S. N., Petriu, E. M., & Groza, V. (2016). Short duration voice data speaker recognition system using novel fuzzy vector quantization algorithm. In Conference Record - IEEE Instrumentation and Measurement Technology Conference (Vols. 2016-July), Taipei, Taiwan. doi:10.1109/I2MTC.2016.7520363.

Australian Government (2024). 5G-Enabling the future economy. Department of Infrastructure, Transport, Regional Development, Communications and the Arts, Australia. Available online: https://www.infrastructure.gov.au/media-centre/publications/5g-enabling-future-economy (accessed on May 2024).

GSM Association. (2023). The Mobile Economy Pacific Islands 2023. GSM Association, London, United Kingdom.

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2023). 5G technology for healthcare: Features, serviceable pillars, and applications. Intelligent Pharmacy, 1(1), 2–10. doi:10.1016/j.ipha.2023.04.001.

Singh, P. (2023). Gamified Wearables in Childhood Obesity Therapy Driven by 5G Wireless Communication System with Special Emphasis on Pacific Island Countries. 5G Wireless Communication System in Healthcare Informatics, CRC Press, 114–132. doi:10.1201/9781003368311-9.

I.T.U. (2022). Facts and Figures 2022. International Telecommunication Union (I.T.U.), Geneva, Switzerland. Available online: https://www.itu.int/itu-d/reports/statistics/2021/11/15/internet-use/ (accessed on May 2024).

The World Bank Group (2024). Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population). The World Bank Group, Washington, United States. Available online: https://databank.worldbank.org/metadataglossary/jobs/series/SI.POV.DDAY (accessed on May 2024).

ECLAC - United Nations. (2007). Panorama Social de America Latina. In Panorama Social de America Latina. Available online: http://repositorio.cepal.org/bitstream/handle/11362/1227/S0700764_es.pdf?sequence=1 (accessed on May 2024).

Sameti, M., Kenary, S. S., & Gharakhani, S. (2014). The Investigation of Internet Effect on Financial Corruption Case study: Iran and Some Selected Developing Countries (2002-2009). International Journal of Academic Research in Business and Social Sciences, 4(7), 450-462.

GSMA. (2022). Mobile Industry Impact Report: Sustainable Development Goals. GSM Association, London, United Kingdom. Available online: https://www.gsma.com/betterfuture/wp-content/uploads/2021/12/SDG_Report_2020_Methodology_Section _V6.pdf (accessed on May 2024).

GSMA. (2017). GSMA Intelligence 5G in China: Outlook and regional comparisons. GSM Association, London, United Kingdom.

Campbell, K., Diffley, J., Flanagan, B., Morelli, B., O’Neil, B., & Sideco, F. (2017). The 5G economy: How 5G technology will contribute to the global economy. IHS Economics & IHS Technology, 1–35.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. doi:10.1136/bmj.n71.

Singh, S. (2021). Minimal redundancy linear array and uniform linear arrays beamforming applications in 5G smart devices. Emerging Science Journal, 4, 70-84. doi:10.28991/esj-2021-SP1-05.

ISED. (2018). Spectrum Outlook 2018 to 2022. Innovation, Science and Economic Development Canada (ISED), SLPB-003-18, Government of Canada, Ottawa, Canada. Available online: https://ised-isde.canada.ca/site/spectrum-management-telecommunications/sites/default/files/attachments/2022/Outlook-2018-EN.pdf (accessed on March 2024).

Singh, S., Singh, S. V., Yadav, D., Suman, S. K., Lakshminarayanan, B., & Singh, G. (2022). Discrete interferences optimum beamformer in correlated signal and interfering noise. International Journal of Electrical and Computer Engineering, 12(2), 1732–1743. doi:10.11591/ijece.v12i2.pp1732-1743.

Weller, S., May, M., McCredden, J., Leach, V., Phung, D., & Belyaev, I. (2023). Comment on “5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz” by Karipidis et al. Journal of Exposure Science and Environmental Epidemiology, 33(1), 17–20. doi:10.1038/s41370-022-00497-8.

Karipidis, K., Mate, R., Urban, D., Tinker, R., & Wood, A. (2021). 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz. Journal of Exposure Science and Environmental Epidemiology, 31(4), 585–605. doi:10.1038/s41370-021-00297-6.

Ariza, F. D. A., & Bahia, K. (2023). Socio-Economic Benefits of 5G the importance of low-band spectrum. GSM Association, London, United Kingdom.

Azari, M. M., Solanki, S., Chatzinotas, S., Kodheli, O., Sallouha, H., Colpaert, A., Mendoza Montoya, J. F., Pollin, S., Haqiqatnejad, A., Mostaani, A., Lagunas, E., & Ottersten, B. (2022). Evolution of Non-Terrestrial Networks from 5G to 6G: A Survey. IEEE Communications Surveys and Tutorials, 24(4), 2633–2672. doi:10.1109/COMST.2022.3199901.

Hakak, S., Gadekallu, T. R., Maddikunta, P. K. R., Ramu, S. P., M, P., De Alwis, C., & Liyanage, M. (2023). Autonomous vehicles in 5G and beyond: A survey. Vehicular Communications, 39. doi:10.1016/j.vehcom.2022.100551.

Togni, L., & Fakoury, R. (2022). Regional Insights into Low-carbon Hydrogen Scale Up: World Energy Insights Working Paper. World Energy Council, London, United Kingdom.

Lamy, P. (2014). Report to the European Commission. Results of the work of the High-Level Group on the Future use of the UHF, 470, 790.

EBU. (2021). Compatibility between 5G Broadcast and other DTT systems in the sub-700 MHz band. European Broadcasting Union. Available online: https://tech.ebu.ch/publications/tr064 (accessed on March 2024).

European Commission (2022). Directorate-General for Communications Networks, Content and Technology, Study on the use of the sub-700 MHz band (470-694 MHz). Final Report, Publications Office of the European Union, 2022. doi:10.2759/94757.

GSMA & Carbon Trust. (2019). The Enablement Effect. The impact of mobile communications technologies on carbon emission reductions. GSM Association, London, United Kingdom. Available online: https://www.gsma.com/betterfuture/wp-content/uploads/2019/12/GSMA_Enablement_Effect.pdf (accessed on March 2024).

Lewin, D., Marks, P., & Nicoletti, S. (2013). Valuing the use of spectrum in the EU. London, EC4A 3BF, United Kingdom.

Ariza, F. D. A., & Bahia, K. (2023). Socio-Economic Benefits of 5G the importance of low-band spectrum. GSMA Intelligence. Available online: https://data.gsmaintelligence.com/research/research/research-2023/socio-economic-benefits-of-5g-the-importance-of-low-band-spectrum (accessed on March 2024)..

Ariza, F. D. A., & Bahia, K. (2023). Appendices: Socio-Economic Benefits of 5G the importance of low-band spectrum. GSMA Intelligence. Available online: https://data.gsmaintelligence.com/signin?returnPath=/research/research/research-2023/socio-economic-benefits-of-5g-the-importance-of-low-band-spectrum (accessed on March 2024).

Singh, S., Rosak-Szyrocka, J., & Tamàndl, L. (2023). Development, Service-Oriented Architecture, and Security of Blockchain Technology for Industry 4.0 IoT Application. HighTech and Innovation Journal, 4(1), 134–156. doi:10.28991/HIJ-2023-04-01-010.

O’Grady, M. J., & O’hare, G. M. P. (2017). Modelling the Smart Farm. Information Processing in Agriculture, 4(3), 179–187. doi:10.1016/j.inpa.2017.05.001.

GSMA & World Bank. (2020). The poverty reduction effects of mobile broadband in Africa: Evidence from Nigeria. GSM Association, London, United Kingdom.

Crabtree, S., Diego-Rosell, P., & Buckles, G. (2018). The impact of mobile on people’s happiness and well-being. GSMA, London, United Kingdom.

Hasan, M. A., Mimi, M. B., Voumik, L. C., Esquivias, M. A., & Rashid, M. (2023). Investigating the Interplay of ICT and Agricultural Inputs on Sustainable Agricultural Production: An ARDL Approach. Journal of Human, Earth, and Future, 4(4), 375-390. doi:10.28991/HEF-2023-04-04-01.

Singh, S., Rosak-Szyrocka, J., Drotár, I., & Fernando, X. (2023). Oceania’s 5G Multi-Tier Fixed Wireless Access Link’s Long-Term Resilience and Feasibility Analysis. Future Internet, 15(10), 334. doi:10.3390/fi15100334.

GSM Association. (2020). GSMA Mobile Economy 2020 Pacific Islands. GSM Association, London, United Kingdom. Available online: https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/ 2020/03/GSMA_MobileEconomy2020_Pacific_Islands.pdf (accessed on March 2024).

ITU. (2017). Measuring the Information Society Report 2017. Volume 2: ICT Country Profiles, International Telecommunication Union, United Nation.

GSM Association. (2022). Maximising the socio-economic value of spectrum A best practice guide for the cost-benefit analysis of 5G spectrum assignments. GSM Association, London, United Kingdom. Available online: https://www.gsma.com/connectivity-for-good/spectrum/wp-content/uploads/2022/01/mobile-spectrum-maximising-socio-economic-value.pdf (accessed on March 2024).

Oughton, E. J., Frias, Z., van der Gaast, S., & van der Berg, R. (2019). Assessing the capacity, coverage and cost of 5G infrastructure strategies: Analysis of the Netherlands. Telematics and Informatics, 37, 50–69. doi:10.1016/j.tele.2019.01.003.

Barnett, T., Jain, S., Andra, U., & Khurana, T. (2018). Global Internet Growth and Trends Source: Cisco VNI Global IP Traffic Forecast. Available online: https://get.drivenets.com/hubfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf (accessed on March 2024).

Coleago. (2021). Estimating the mid-band spectrum needs in the 2025-2030 time frame Global Outlook. A Report by Coleago Consulting Ltd, 23–27.

Onopa, S., & Kotulski, Z. (2024). State-of-the-Art and New Challenges in 5G Networks with Blockchain Technology. Electronics (Switzerland), 13(5), 974. doi:10.3390/electronics13050974.

Vincenzi, M., Antonopoulos, A., Kartsakli, E., Vardakas, J., Alonso, L., & Verikoukis, C. (2017). Multi-Tenant Slicing for Spectrum Management on the Road to 5G. IEEE Wireless Communications, 24(5), 118–125. doi:10.1109/MWC.2017.1700138.

Farasat, M., Thalakotuna, D. N., Hu, Z., & Yang, Y. (2021). A review on 5G sub-6 GHz base station antenna design challenges. Electronics (Switzerland), 10(16), 2000. doi:10.3390/electronics10162000.

ETSI. (2018). Security architecture and procedures for 5G System (Release 16.3.0); TS 33.501 (Vol. 0). ETSI, Sophia Antipolis, France. Available online: https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/17.05.00_60/ts_133501v170500p.pdf (accessed on March 2024).

Mackay, M. (2022). Editorial for the Special Issue on 5G Enabling Technologies and Wireless Networking. Future Internet, 14(11). doi:10.3390/fi14110342.

Sayeed, M. S., Abdulrahim, H., Razak, S. F. A., Bukar, U. A., & Yogarayan, S. (2023). IoT Raspberry Pi Based Smart Parking System with Weighted K-Nearest Neighbours Approach. Civil Engineering Journal, 9(8), 1991-2011. doi:10.28991/CEJ-2023-09-08-012.

Oughton, E. J., & Frias, Z. (2018). The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommunications Policy, 42(8), 636–652. doi:10.1016/j.telpol.2017.07.009.

Bauer, J. M., & Bohlin, E. (2022). Regulation and innovation in 5G markets. Telecommunications Policy, 46(4), 102260. doi:10.1016/j.telpol.2021.102260.

Lee, M. H., Liu, I. H., Huang, H. C., & Li, J. S. (2023). Cyber Security in a 5G-Based Smart Healthcare Network: A Base Station Case Study. Engineering Proceedings, 55(1), 50. doi:10.3390/engproc2023055050.

Scalise, P., Boeding, M., Hempel, M., Sharif, H., Delloiacovo, J., & Reed, J. (2024). A Systematic Survey on 5G and 6G Security Considerations, Challenges, Trends, and Research Areas. Future Internet, 16(3), 67. doi:10.3390/fi16030067.

Caso, G., Alay, Ö., Brunstrom, A., Koumaras, H., Díaz Zayas, A., & Frascolla, V. (2023). Experimentation in 5G and beyond Networks: State of the Art and the Way Forward. Sensors, 23(24), 9671. doi:10.3390/s23249671.

Devi, D. H., Duraisamy, K., Armghan, A., Alsharari, M., Aliqab, K., Sorathiya, V., Das, S., & Rashid, N. (2023). 5G Technology in Healthcare and Wearable Devices: A Review. Sensors, 23(5), 2519. doi:10.3390/s23052519.

Farhi, F., Jeljeli, R., Zamoum, K., Boudhane, Y., & Lagha, F. B. (2023). Metaverse technology in communication practices: a case study of IT products retailers in the UAE. Emerging Science Journal, 7(3), 928-942. doi:10.28991/ESJ-2023-07-03-019.

Car, T., Pilepić Stifanich, L., & Kovačić, N. (2022). The Role of 5G and IoT in Smart Cities. Entrenova - Enterprise Research Innovation, 8(1), 377–389. doi:10.54820/entrenova-2022-0032.

Moreno-Vozmediano, R., Montero, R. S., Huedo, E., & Llorente, I. M. (2024). Intelligent Resource Orchestration for 5G Edge Infrastructures. Future Internet, 16(3), 103. doi:10.3390/fi16030103.

Chi, H. R. (2023). Editorial: Edge Computing for the Internet of Things. Journal of Sensor and Actuator Networks, 12(1), 17. doi:10.3390/jsan12010017.

Chen, Q., Wang, Z., Su, Y., Fu, L., & Wei, Y. (2022). Educational 5G Edge Computing: Framework and Experimental Study. Electronics (Switzerland), 11(17), 2727. doi:10.3390/electronics11172727.

Full Text: PDF

DOI: 10.28991/HIJ-2024-05-02-020


  • There are currently no refbacks.

Copyright (c) 2024 Satyanand Singh, Pragya Singh, Joanna Rosak-Szyrocka, Laszlo Vasa