An Adaptive Differential Evolution with Multiple Crossover Strategies for Optimization Problems
Abstract
Doi: 10.28991/HIJ-2024-05-02-02
Full Text: PDF
Keywords
References
Zheng, B., & Zhang, R. (2020). Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Communications Letters, 9(4), 518–522. doi:10.1109/LWC.2019.2961357.
Panwar, K., & Deep, K. (2021). Transformation operators based grey wolf optimizer for travelling salesman problem. Journal of Computational Science, 55. doi:10.1016/j.jocs.2021.101454.
Hartono, N., Ramírez, F. J., & Pham, D. T. (2022). Optimisation of robotic disassembly plans using the Bees Algorithm. Robotics and Computer-Integrated Manufacturing, 78, 102411. doi:10.1016/j.rcim.2022.102411.
Li, S., Gu, Q., Gong, W., & Ning, B. (2020). An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 205, 112443. doi:10.1016/j.enconman.2019.112443.
Biswas, P. P., Suganthan, P. N., Wu, G., & Amaratunga, G. A. J. (2019). Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renewable Energy, 132, 425–438. doi:10.1016/j.renene.2018.07.152.
Tansui, D., & Thammano, A. (2020). Hybrid Nature-Inspired Optimization Algorithm: Hydrozoan and Sea Turtle Foraging Algorithms for Solving Continuous Optimization Problems. IEEE Access, 8, 65780–65800. doi:10.1109/ACCESS.2020.2984023.
Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. doi:10.1016/j.aej.2021.09.013.
Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020). Differential Evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479. doi:10.1016/j.engappai.2020.103479.
Alorf, A. (2023). A survey of recently developed metaheuristics and their comparative analysis. Engineering Applications of Artificial Intelligence, 117, 105622. doi:10.1016/j.engappai.2022.105622.
Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2019). Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4), 2191–2233. doi:10.1007/s10462-017-9605-z.
Ezugwu, A. E., Adeleke, O. J., Akinyelu, A. A., & Viriri, S. (2020). A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Computing and Applications, 32(10), 6207–6251. doi:10.1007/s00521-019-04132-w.
Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. Adaptation in Natural and Artificial Systems. MIT press, Massachusetts, United States. doi:10.7551/mitpress/1090.001.0001.
Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328.
Kennedy, J., & Eberhart. R.: Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. doi:10.1109/ICNN.1995.488968.
Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. doi:10.1109/MCI.2006.329691.
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. doi:10.1007/s10898-007-9149-x.
Yang, X.-S. S. (2010). A New Metaheuristic Bat-Inspired Algorithm BT - Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, 284, 65–74. doi:10.1007/978-3-642-12538-6_6.
Yang, X. S., & Slowik, A. (2020). Firefly algorithm. In Swarm intelligence algorithms. CRC Press, 163-174. doi:10.1201/9780429422614-13.
Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 210–214. doi:10.1109/NABIC.2009.5393690.
Pham, D. T., Castellani, M., Sholedolu, M., & Ghanbarzadeh, A. (2008). The bees algorithm and mechanical design optimisation. ICINCO 2008 - Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, ICSO, 250–255. doi:10.5220/0001506102500255.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007.
Wu, G., Shen, X., Li, H., Chen, H., Lin, A., & Suganthan, P. N. (2018). Ensemble of differential evolution variants. Information Sciences, 423, 172–186. doi:10.1016/j.ins.2017.09.053.
Opara, K. R., & Arabas, J. (2019). Differential Evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation, 44, 546–558. doi:10.1016/j.swevo.2018.06.010.
Li, Y., Wang, S., Yang, H., Chen, H., & Yang, B. (2023). Enhancing differential evolution algorithm using leader-adjoint populations. Information Sciences, 622, 235–268. doi:10.1016/j.ins.2022.11.106.
Li, Y., Wang, S., & Yang, B. (2020). An improved differential evolution algorithm with dual mutation strategies collaboration. Expert Systems with Applications, 153, 113451. doi:10.1016/j.eswa.2020.113451.
Meng, Z., Pan, J. S., & Tseng, K. K. (2019). PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowledge-Based Systems, 168, 80–99. doi:10.1016/j.knosys.2019.01.006.
Deng, W., Xu, J., Song, Y., & Zhao, H. (2021). Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem. Applied Soft Computing, 100, 106724. doi:10.1016/j.asoc.2020.106724.
Mohamed, A. W., & Mohamed, A. K. (2019). Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. International Journal of Machine Learning and Cybernetics, 10(2), 253–277. doi:10.1007/s13042-017-0711-7.
Deng, W., Shang, S., Cai, X., Zhao, H., Zhou, Y., Chen, H., & Deng, W. (2021). Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization. Knowledge-Based Systems, 224, 107080. doi:10.1016/j.knosys.2021.107080.
Gao, S., Yu, Y., Wang, Y., Wang, J., Cheng, J., & Zhou, M. (2021). Chaotic Local Search-Based Differential Evolution Algorithms for Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6), 3954–3967. doi:10.1109/TSMC.2019.2956121.
Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Faris, H. (2020). MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Applied Soft Computing Journal, 97, 106761. doi:10.1016/j.asoc.2020.106761.
Sun, G., Yang, B., Yang, Z., & Xu, G. (2020). An adaptive differential evolution with combined strategy for global numerical optimization. Soft Computing, 24(9), 6277–6296. doi:10.1007/s00500-019-03934-3.
Zhan, Z. H., Wang, Z. J., Jin, H., & Zhang, J. (2020). Adaptive Distributed Differential Evolution. IEEE Transactions on Cybernetics, 50(11), 4633–4647. doi:10.1109/TCYB.2019.2944873.
Sun, G., Li, C., & Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing and Applications, 33(15), 9503–9519. doi:10.1007/s00521-021-05708-1.
Yu, Y., Gao, S., Wang, Y., & Todo, Y. (2019). Global optimum-based search differential evolution. IEEE/CAA Journal of Automatica Sinica, 6(2), 379–394. doi:10.1109/JAS.2019.1911378.
Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., & Zamuda, A. (2019). Distance based parameter adaptation for Success-History based Differential Evolution. Swarm and Evolutionary Computation, 50, 100462. doi:10.1016/j.swevo.2018.10.013.
Wang, S., Li, Y., & Yang, H. (2019). Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Applied Soft Computing Journal, 81, 105496. doi:10.1016/j.asoc.2019.105496.
Meng, Z., & Pan, J. S. (2019). HARD-DE: Hierarchical Archive Based Mutation Strategy with Depth Information of Evolution for the Enhancement of Differential Evolution on Numerical Optimization. IEEE Access, 7, 12832–12854. doi:10.1109/ACCESS.2019.2893292.
Tian, M., & Gao, X. (2019). Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Information Sciences, 478, 422–448. doi:10.1016/j.ins.2018.11.021.
Civicioglu, P., & Besdok, E. (2019). Bernstain-search differential evolution algorithm for numerical function optimization. Expert Systems with Applications, 138, 112831. doi:10.1016/j.eswa.2019.112831.
Sun, G., Xu, G., & Jiang, N. (2020). A simple differential evolution with time-varying strategy for continuous optimization. Soft Computing, 24(4), 2727–2747. doi:10.1007/s00500-019-04159-0.
Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. doi:10.1016/j.eswa.2021.116158.
Pietropolli, G., Menara, G., & Castelli, M. (2023). A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration. Emerging Science Journal, 7(4), 1037-1051. doi:10.28991/ESJ-2023-07-04-01.
Houssein, E. H., Mahdy, M. A., Blondin, M. J., Shebl, D., & Mohamed, W. M. (2021). Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Systems with Applications, 174, 114689. doi:10.1016/j.eswa.2021.114689.
Deng, W., Liu, H., Xu, J., Zhao, H., & Song, Y. (2020). An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network. IEEE Transactions on Instrumentation and Measurement, 69(10), 7319–7327. doi:10.1109/TIM.2020.2983233.
Liu, L., Zhao, D., Yu, F., Heidari, A. A., Ru, J., Chen, H., Mafarja, M., Turabieh, H., & Pan, Z. (2021). Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Computers in Biology and Medicine, 138, 104910. doi:10.1016/j.compbiomed.2021.104910.
Singh, D., Kumar, V., Vaishali, & Kaur, M. (2020). Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology and Infectious Diseases, 39(7), 1379–1389. doi:10.1007/s10096-020-03901-z.
Zhao, F., Zhao, L., Wang, L., & Song, H. (2020). An ensemble discrete differential evolution for the distributed blocking flow shop scheduling with minimizing make span criterion. Expert Systems with Applications, 160, 113678. doi:10.1016/j.eswa.2020.113678.
Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958. doi:10.1109/TEVC.2009.2014613.
Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 145–152. doi:10.1109/CEC.2017.7969307.
Chen, H., Li, S., Li, X., Zhao, Y., & Dong, J. (2023). A hybrid adaptive Differential Evolution based on Gaussian tail mutation. Engineering Applications of Artificial Intelligence, 119, 105739. doi:10.1016/j.engappai.2022.105739.
Zuo, M., & Guo, C. (2022). DE/current−to−better/1: A new mutation operator to keep population diversity. Intelligent Systems with Applications, 14, 200063. doi:10.1016/j.iswa.2022.200063.
Xiong, J., Peng, T., Tao, Z., Zhang, C., Song, S., & Nazir, M. S. (2023). A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy, 266, 126419. doi:10.1016/j.energy.2022.126419.
Emam, M. M., Houssein, E. H., & Ghoniem, R. M. (2023). A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Computers in Biology and Medicine, 152, 106404. doi:10.1016/j.compbiomed.2022.106404.
Ekinci, S., Izci, D., Abu Zitar, R., Alsoud, A. R., & Abualigah, L. (2022). Development of Lévy flight-based reptile search algorithm with local search ability for power systems engineering design problems. Neural Computing and Applications, 34(22), 20263–20283. doi:10.1007/s00521-022-07575-w.
Liang, J. J., Qu, B. Y., Suganthan, P. N., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 29, 625-640.
Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE congress on evolutionary computation (CEC), IEEE, 372-379. doi:10.1109/CEC.2017.7969336.
Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18. doi:10.1016/j.swevo.2011.02.002.
Wang, S., Li, Y., & Yang, H. (2017). Self-adaptive differential evolution algorithm with improved mutation mode. Applied Intelligence, 47(3), 644–658. doi:10.1007/s10489-017-0914-3.
Zheng, L. M., Zhang, S. X., Tang, K. S., & Zheng, S. Y. (2017). Differential evolution powered by collective information. Information Sciences, 399, 13–29. doi:10.1016/j.ins.2017.02.055.
Mohamed, A. W., Hadi, A. A., & Jambi, K. M. (2019). Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Swarm and Evolutionary Computation, 50, 100455. doi:10.1016/j.swevo.2018.10.006.
Li, S., Gong, W., Wang, L., Yan, X., & Hu, C. (2020). A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models. Energy Conversion and Management, 225, 113474. doi:10.1016/j.enconman.2020.113474.
Zhong, X., Duan, M., Zhang, X., & Cheng, P. (2021). A hybrid differential evolution based on gaining-sharing knowledge algorithm and Harris hawks optimization. PLoS ONE, 16(4 April), 250951. doi:10.1371/journal.pone.0250951.
DOI: 10.28991/HIJ-2024-05-02-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Irfan Farda, Arit Thammano