An Adaptive Differential Evolution with Multiple Crossover Strategies for Optimization Problems

Irfan Farda, Arit Thammano

Abstract


The efficiency of a Differential Evolution (DE) algorithm largely depends on the control parameters of the mutation strategy. However, fixed-value control parameters are not effective for all types of optimization problems. Furthermore, DE search capability is often restricted, leading to limited exploration and poor exploitation when relying on a single strategy. These limitations cause DE algorithms to potentially miss promising regions, converge slowly, and stagnate in local optima. To address these drawbacks, we proposed a new Adaptive Differential Evolution Algorithm with Multiple Crossover Strategy Scheme (ADEMCS). We introduced an adaptive mutation strategy that enabled DE to adapt to specific optimization problems. Additionally, we augmented DE with a powerful local search ability: a hunting coordination operator from the reptile search algorithm for faster convergence. To validate ADEMCS effectiveness, we ran extensive experiments using 32 benchmark functions from CEC2015 and CEC2016. Our new algorithm outperformed nine state-of-the-art DE variants in terms of solution quality. The integration of the adaptive mutation strategy and the hunting coordination operator significantly enhanced DE's global and local search capabilities. Overall, ADEMCS represented a promising approach for optimization, offering adaptability and improved performance over existing variants.

 

Doi: 10.28991/HIJ-2024-05-02-02

Full Text: PDF


Keywords


Metaheuristic Algorithm; Differential Evolution Algorithm; Multiple Strategies; Reptile Search Algorithm.

References


Zheng, B., & Zhang, R. (2020). Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Communications Letters, 9(4), 518–522. doi:10.1109/LWC.2019.2961357.

Panwar, K., & Deep, K. (2021). Transformation operators based grey wolf optimizer for travelling salesman problem. Journal of Computational Science, 55. doi:10.1016/j.jocs.2021.101454.

Hartono, N., Ramírez, F. J., & Pham, D. T. (2022). Optimisation of robotic disassembly plans using the Bees Algorithm. Robotics and Computer-Integrated Manufacturing, 78, 102411. doi:10.1016/j.rcim.2022.102411.

Li, S., Gu, Q., Gong, W., & Ning, B. (2020). An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 205, 112443. doi:10.1016/j.enconman.2019.112443.

Biswas, P. P., Suganthan, P. N., Wu, G., & Amaratunga, G. A. J. (2019). Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renewable Energy, 132, 425–438. doi:10.1016/j.renene.2018.07.152.

Tansui, D., & Thammano, A. (2020). Hybrid Nature-Inspired Optimization Algorithm: Hydrozoan and Sea Turtle Foraging Algorithms for Solving Continuous Optimization Problems. IEEE Access, 8, 65780–65800. doi:10.1109/ACCESS.2020.2984023.

Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. doi:10.1016/j.aej.2021.09.013.

Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020). Differential Evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479. doi:10.1016/j.engappai.2020.103479.

Alorf, A. (2023). A survey of recently developed metaheuristics and their comparative analysis. Engineering Applications of Artificial Intelligence, 117, 105622. doi:10.1016/j.engappai.2022.105622.

Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2019). Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4), 2191–2233. doi:10.1007/s10462-017-9605-z.

Ezugwu, A. E., Adeleke, O. J., Akinyelu, A. A., & Viriri, S. (2020). A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Computing and Applications, 32(10), 6207–6251. doi:10.1007/s00521-019-04132-w.

Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. Adaptation in Natural and Artificial Systems. MIT press, Massachusetts, United States. doi:10.7551/mitpress/1090.001.0001.

Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328.

Kennedy, J., & Eberhart. R.: Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. doi:10.1109/ICNN.1995.488968.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. doi:10.1109/MCI.2006.329691.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. doi:10.1007/s10898-007-9149-x.

Yang, X.-S. S. (2010). A New Metaheuristic Bat-Inspired Algorithm BT - Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, 284, 65–74. doi:10.1007/978-3-642-12538-6_6.

Yang, X. S., & Slowik, A. (2020). Firefly algorithm. In Swarm intelligence algorithms. CRC Press, 163-174. doi:10.1201/9780429422614-13.

Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 210–214. doi:10.1109/NABIC.2009.5393690.

Pham, D. T., Castellani, M., Sholedolu, M., & Ghanbarzadeh, A. (2008). The bees algorithm and mechanical design optimisation. ICINCO 2008 - Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, ICSO, 250–255. doi:10.5220/0001506102500255.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007.

Wu, G., Shen, X., Li, H., Chen, H., Lin, A., & Suganthan, P. N. (2018). Ensemble of differential evolution variants. Information Sciences, 423, 172–186. doi:10.1016/j.ins.2017.09.053.

Opara, K. R., & Arabas, J. (2019). Differential Evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation, 44, 546–558. doi:10.1016/j.swevo.2018.06.010.

Li, Y., Wang, S., Yang, H., Chen, H., & Yang, B. (2023). Enhancing differential evolution algorithm using leader-adjoint populations. Information Sciences, 622, 235–268. doi:10.1016/j.ins.2022.11.106.

Li, Y., Wang, S., & Yang, B. (2020). An improved differential evolution algorithm with dual mutation strategies collaboration. Expert Systems with Applications, 153, 113451. doi:10.1016/j.eswa.2020.113451.

Meng, Z., Pan, J. S., & Tseng, K. K. (2019). PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowledge-Based Systems, 168, 80–99. doi:10.1016/j.knosys.2019.01.006.

Deng, W., Xu, J., Song, Y., & Zhao, H. (2021). Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem. Applied Soft Computing, 100, 106724. doi:10.1016/j.asoc.2020.106724.

Mohamed, A. W., & Mohamed, A. K. (2019). Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. International Journal of Machine Learning and Cybernetics, 10(2), 253–277. doi:10.1007/s13042-017-0711-7.

Deng, W., Shang, S., Cai, X., Zhao, H., Zhou, Y., Chen, H., & Deng, W. (2021). Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization. Knowledge-Based Systems, 224, 107080. doi:10.1016/j.knosys.2021.107080.

Gao, S., Yu, Y., Wang, Y., Wang, J., Cheng, J., & Zhou, M. (2021). Chaotic Local Search-Based Differential Evolution Algorithms for Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6), 3954–3967. doi:10.1109/TSMC.2019.2956121.

Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Faris, H. (2020). MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Applied Soft Computing Journal, 97, 106761. doi:10.1016/j.asoc.2020.106761.

Sun, G., Yang, B., Yang, Z., & Xu, G. (2020). An adaptive differential evolution with combined strategy for global numerical optimization. Soft Computing, 24(9), 6277–6296. doi:10.1007/s00500-019-03934-3.

Zhan, Z. H., Wang, Z. J., Jin, H., & Zhang, J. (2020). Adaptive Distributed Differential Evolution. IEEE Transactions on Cybernetics, 50(11), 4633–4647. doi:10.1109/TCYB.2019.2944873.

Sun, G., Li, C., & Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing and Applications, 33(15), 9503–9519. doi:10.1007/s00521-021-05708-1.

Yu, Y., Gao, S., Wang, Y., & Todo, Y. (2019). Global optimum-based search differential evolution. IEEE/CAA Journal of Automatica Sinica, 6(2), 379–394. doi:10.1109/JAS.2019.1911378.

Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., & Zamuda, A. (2019). Distance based parameter adaptation for Success-History based Differential Evolution. Swarm and Evolutionary Computation, 50, 100462. doi:10.1016/j.swevo.2018.10.013.

Wang, S., Li, Y., & Yang, H. (2019). Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Applied Soft Computing Journal, 81, 105496. doi:10.1016/j.asoc.2019.105496.

Meng, Z., & Pan, J. S. (2019). HARD-DE: Hierarchical Archive Based Mutation Strategy with Depth Information of Evolution for the Enhancement of Differential Evolution on Numerical Optimization. IEEE Access, 7, 12832–12854. doi:10.1109/ACCESS.2019.2893292.

Tian, M., & Gao, X. (2019). Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Information Sciences, 478, 422–448. doi:10.1016/j.ins.2018.11.021.

Civicioglu, P., & Besdok, E. (2019). Bernstain-search differential evolution algorithm for numerical function optimization. Expert Systems with Applications, 138, 112831. doi:10.1016/j.eswa.2019.112831.

Sun, G., Xu, G., & Jiang, N. (2020). A simple differential evolution with time-varying strategy for continuous optimization. Soft Computing, 24(4), 2727–2747. doi:10.1007/s00500-019-04159-0.

Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. doi:10.1016/j.eswa.2021.116158.

Pietropolli, G., Menara, G., & Castelli, M. (2023). A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration. Emerging Science Journal, 7(4), 1037-1051. doi:10.28991/ESJ-2023-07-04-01.

Houssein, E. H., Mahdy, M. A., Blondin, M. J., Shebl, D., & Mohamed, W. M. (2021). Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Systems with Applications, 174, 114689. doi:10.1016/j.eswa.2021.114689.

Deng, W., Liu, H., Xu, J., Zhao, H., & Song, Y. (2020). An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network. IEEE Transactions on Instrumentation and Measurement, 69(10), 7319–7327. doi:10.1109/TIM.2020.2983233.

Liu, L., Zhao, D., Yu, F., Heidari, A. A., Ru, J., Chen, H., Mafarja, M., Turabieh, H., & Pan, Z. (2021). Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Computers in Biology and Medicine, 138, 104910. doi:10.1016/j.compbiomed.2021.104910.

Singh, D., Kumar, V., Vaishali, & Kaur, M. (2020). Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology and Infectious Diseases, 39(7), 1379–1389. doi:10.1007/s10096-020-03901-z.

Zhao, F., Zhao, L., Wang, L., & Song, H. (2020). An ensemble discrete differential evolution for the distributed blocking flow shop scheduling with minimizing make span criterion. Expert Systems with Applications, 160, 113678. doi:10.1016/j.eswa.2020.113678.

Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958. doi:10.1109/TEVC.2009.2014613.

Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 145–152. doi:10.1109/CEC.2017.7969307.

Chen, H., Li, S., Li, X., Zhao, Y., & Dong, J. (2023). A hybrid adaptive Differential Evolution based on Gaussian tail mutation. Engineering Applications of Artificial Intelligence, 119, 105739. doi:10.1016/j.engappai.2022.105739.

Zuo, M., & Guo, C. (2022). DE/current−to−better/1: A new mutation operator to keep population diversity. Intelligent Systems with Applications, 14, 200063. doi:10.1016/j.iswa.2022.200063.

Xiong, J., Peng, T., Tao, Z., Zhang, C., Song, S., & Nazir, M. S. (2023). A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy, 266, 126419. doi:10.1016/j.energy.2022.126419.

Emam, M. M., Houssein, E. H., & Ghoniem, R. M. (2023). A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Computers in Biology and Medicine, 152, 106404. doi:10.1016/j.compbiomed.2022.106404.

Ekinci, S., Izci, D., Abu Zitar, R., Alsoud, A. R., & Abualigah, L. (2022). Development of Lévy flight-based reptile search algorithm with local search ability for power systems engineering design problems. Neural Computing and Applications, 34(22), 20263–20283. doi:10.1007/s00521-022-07575-w.

Liang, J. J., Qu, B. Y., Suganthan, P. N., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 29, 625-640.

Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE congress on evolutionary computation (CEC), IEEE, 372-379. doi:10.1109/CEC.2017.7969336.

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18. doi:10.1016/j.swevo.2011.02.002.

Wang, S., Li, Y., & Yang, H. (2017). Self-adaptive differential evolution algorithm with improved mutation mode. Applied Intelligence, 47(3), 644–658. doi:10.1007/s10489-017-0914-3.

Zheng, L. M., Zhang, S. X., Tang, K. S., & Zheng, S. Y. (2017). Differential evolution powered by collective information. Information Sciences, 399, 13–29. doi:10.1016/j.ins.2017.02.055.

Mohamed, A. W., Hadi, A. A., & Jambi, K. M. (2019). Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Swarm and Evolutionary Computation, 50, 100455. doi:10.1016/j.swevo.2018.10.006.

Li, S., Gong, W., Wang, L., Yan, X., & Hu, C. (2020). A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models. Energy Conversion and Management, 225, 113474. doi:10.1016/j.enconman.2020.113474.

Zhong, X., Duan, M., Zhang, X., & Cheng, P. (2021). A hybrid differential evolution based on gaining-sharing knowledge algorithm and Harris hawks optimization. PLoS ONE, 16(4 April), 250951. doi:10.1371/journal.pone.0250951.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-02-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Irfan Farda, Arit Thammano