Innovative Label Embedding for Food Safety Comment Classification: Fusion of Self-Semantic and Self-Knowledge Features
Abstract
Doi: 10.28991/HIJ-2024-05-01-013
Full Text: PDF
Keywords
References
Seo, S., Almanza, B., Miao, L., & Behnke, C. (2015). The Effect of Social Media Comments on Consumers’ Responses to Food Safety Information. Journal of Foodservice Business Research, 18(2), 111–131. doi:10.1080/15378020.2015.1029384.
Lobb, A. (2005). Consumer trust, risk and food safety: A review. Food Economics-Acta Agriculturae Scandinavica, Section C, 2(1), 3-12. doi:10.1080/16507540510033424.
Jin, C., Bouzembrak, Y., Zhou, J., Liang, Q., Van Den Bulk, L. M., Gavai, A., ... & Marvin, H. J. (2020). Big Data in food safety-A review. Current Opinion in Food Science, 36, 24-32. doi:10.1016/j.cofs.2020.11.006.
Wang, J., & Yue, H. (2017). Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control, 73, 223–229. doi:10.1016/j.foodcont.2016.09.048.
Geng, Z., Shang, D., Han, Y., & Zhong, Y. (2019). Early warning modeling and analysis based on a deep radial basis function neural network integrating an analytic hierarchy process: A case study for food safety. Food Control, 96, 329–342. doi:10.1016/j.foodcont.2018.09.027.
Van de Brug, F. J., Lucas Luijckx, N. B., Cnossen, H. J., & Houben, G. F. (2014). Early signals for emerging food safety risks: From past cases to future identification. Food Control, 39(1), 75–86. doi:10.1016/j.foodcont.2013.10.038.
Huang, Y., Wang, X., Wang, R., & Min, J. (2022). Analysis and Recognition of Food Safety Problems in Online Ordering Based on Reviews Text Mining. Wireless Communications and Mobile Computing, 2022, 1–15. doi:10.1155/2022/4209732.
Li, Y., Gao, X., Du, M., He, R., Yang, S., & Xiong, J. (2020). What causes different sentiment classification on social network services? Evidence from weibo with genetically modified food in China. Sustainability (Switzerland), 12(4), 1345. doi:10.3390/su12041345.
Wang, S., & Manning, C. D. (2012). Baselines and bigrams: Simple, good sentiment and topic classification. 50th Annual Meeting of the Association for Computational Linguistics, ACL 2012 - Proceedings of the Conference, 2, 90–94.
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014 - Proceedings of the Conference, 1, 655–665. doi:10.3115/v1/p14-1062.
Zhang, H., Xiao, L., Chen, W., Wang, Y., & Jin, Y. (2018). Multi-task label embedding for text classification. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP, 4545–4553. doi:10.18653/v1/d18-1484.
Tan, C., Ren, Y., & Wang, C. (2023). An adaptive convolution with label embedding for text classification. Applied Intelligence, 53(1), 804–812. doi:10.1007/s10489-021-02702-x.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 4171–4186. doi:10.48550/arXiv.1810.04805.
Miyazaki, T., Makino, K., Takei, Y., Okamoto, H., & Goto, J. (2019). Label embedding using hierarchical structure of labels for twitter classification. EMNLP-IJCNLP - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 6317–6322. doi:10.18653/v1/d19-1660.
Zhang, K., Wu, L., Lv, G., Chen, E., Ruan, S., Liu, J., Zhang, Z., Zhou, J., & Wang, M. (2023). Description-Enhanced Label Embedding Contrastive Learning for Text Classification. IEEE Transactions on Neural Networks and Learning Systems, 1-14. doi:10.1109/TNNLS.2023.3282020.
Hambrick, D. Z., & Meinz, E. J. (2011). Limits on the predictive power of domain-specific experience and knowledge in skilled performance. Current Directions in Psychological Science, 20(5), 275–279. doi:10.1177/0963721411422061.
Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2016). Label-Embedding for Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7), 1425–1438. doi:10.1109/TPAMI.2015.2487986.
Qu, X., Che, H., Huang, J., Xu, L., & Zheng, X. (2023). Multi-layered semantic representation network for multi-label image classification. International Journal of Machine Learning and Cybernetics, 14(10), 3427–3435. doi:10.1007/s13042-023-01841-6.
Rodriguez-Serrano, J. A., & Perronnin, F. (2013). Label embedding for text recognition. BMVC 2013 - Electronic Proceedings of the British Machine Vision Conference, 1-12. doi:10.5244/C.27.5.
Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M. A., & Mikolov, T. (2013). Devise: A deep visual-semantic embedding model. Advances in Neural Information Processing Systems, 26, 2121-2129.
He, S., Guo, T., Dai, T., Qiao, R., Shu, X., Ren, B., & Xia, S. T. (2023). Open-Vocabulary Multi-Label Classification via Multi-Modal Knowledge Transfer. Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37(1), 808–816. doi:10.1609/aaai.v37i1.25159.
Palatucci, M., Pomerleau, D., Hinton, G., & Mitchell, T. M. (2009). Zero-shot learning with semantic output codes. Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference, 22, 1410–1418.
Zhang, H., Meng, X., Cao, W., Liu, Y., Ming, Z., & Yang, J. (2023). Graph embedding based multi-label Zero-shot Learning. Neural Networks, 167, 129–140. doi:10.1016/j.neunet.2023.08.023.
Tang, J., Qu, M., & Mei, Q. (2015). PTE: Predictive text embedding through large-scale heterogeneous text networks. Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, 1165-1174. doi:10.1145/2783258.2783307.
Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., ... & He, L. (2020). A survey on text classification: From shallow to deep learning. arXiv preprint, arXiv:2008.00364. doi:10.48550/arXiv.2008.00364
Chen, X., Qiu, X., Zhu, C., Wu, S., & Huang, X. (2015). Sentence modeling with gated recursive neural network. Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, 793–798. doi:10.18653/v1/d15-1092.
Zagoruyko, S., & Komodakis, N. (2015). Learning to compare image patches via convolutional neural networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015, 4353–4361. doi:10.1109/CVPR.2015.7299064.
Yu, J., & Jiang, J. (2016). Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 236–246. doi:10.18653/v1/d16-1023.
Church, K. W. (2017). Word2Vec. Natural Language Engineering, 23(1), 155-162. doi:10.1017/S1351324916000334.
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. EMNLP - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1532–1543. doi:10.3115/v1/d14-1162.
Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-Training with Whole Word Masking for Chinese BERT. IEEE/ACM Transactions on Audio Speech and Language Processing, 29, 3504–3514. doi:10.1109/TASLP.2021.3124365.
Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., ... & Wu, H. (2019). Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223. doi:10.48550/arXiv.1904.09223.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. arXiv preprint, arXiv:1412.6980. doi:10.48550/arXiv.1412.6980.
DOI: 10.28991/HIJ-2024-05-01-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Yiming Zhang