Optimization of Microeconomic Models Under Integrated Partial Differential Equations

Linwen Huo, Shumin Wei, Ianwei Wang

Abstract


Objectives: This study aims to optimize microeconomic models under integrated partial differential equations, focusing on microeconomics and mathematics. Specifically, it examines the optimization of a Microeconomic model in university management, considering the balance between teaching and research activities within departments. Methods/Analysis: The study employs integrated partial differential equations to model the behavior of individuals and firms in a market economy, coupled with microeconomic principles. It analyzes the competitive nature of teaching and research activities within a university department, accounting for resource allocation, suitability of materials, and the challenge of modifying departmental makeup in the short term. Novelty/Improvement: The novelty lies in integrating microeconomic modeling with mathematics, offering a comprehensive approach to university management optimization. By considering the competitive dynamics between teaching and research, as well as the constraints imposed by academic tenure and resource allocation, the model more closely reflects the reality of Higher Education institutions. Findings: The study demonstrates that the proposed model achieves an accuracy of 95% in optimizing resource allocation between teaching and research activities while maintaining quality and adhering to financial constraints. This finding underscores the effectiveness of integrating microeconomic principles with mathematical techniques in addressing complex management challenges within academic institutions.

 

Doi: 10.28991/HIJ-2024-05-04-09

Full Text: PDF


Keywords


Optimization; Microeconomic Models; Integrated Partial Differential Equations; University Management.

References


Popelo, O., Shaposhnykov, K., Popelo, O., Hrubliak, O., Malysh, V., & Lysenko, Z. (2023). The Influence of Digitalization on the Innovative Strategy of the Industrial Enterprises Development in the Context of Ensuring Economic Security. International Journal of Safety & Security Engineering, 13(1), 39-49. doi:10.18280/ijsse.130105.

Fajar, A. N., Limonthy, S., Handopo, J. J., Purnawan, F., & Kesuma, A. E. (2023). System Architecture for IT Talent Ecosystem Using Service Oriented Approach. HighTech and Innovation Journal, 4(4), 739-748. doi:10.28991/HIJ-2023-04-04-03.

Chai, J., Weng, Z., & Liu, W. (2021). Behavioral Decision Making in Normative and Descriptive Views: A Critical Review of Literature. Journal of Risk and Financial Management, 14(10), 490. doi:10.3390/jrfm14100490.

Li, X., Li, Z., Su, C. W., Umar, M., & Shao, X. (2022). Exploring the asymmetric impact of economic policy uncertainty on China’s carbon emissions trading market price: Do different types of uncertainty matter? Technological Forecasting and Social Change, 178, 121601. doi:10.1016/j.techfore.2022.121601.

Boyd, C. M., & Bellemare, M. F. (2020). The microeconomics of agricultural price risk. Annual Review of Resource Economics, 12, 149–169. doi:10.1146/annurev-resource-100518-093807.

Yang, Y. J., Chen, C. C., & Chen, Y. T. (2020). New method of solving the economic complex systems. Discrete Dynamics in Nature and Society, 2020, 1–26. doi:10.1155/2020/8827544.

Gołȩbiewski, D., Barszcz, T., Skrodzka, W., Wojnicki, I., & Bielecki, A. (2022). A New Approach to Risk Management in the Power Industry Based on Systems Theory. Energies, 15(23), 9003. doi:10.3390/en15239003.

Morlin, G. S., Passos, N., & Pariboni, R. (2022). Growth Theory and the Growth Model Perspective: Insights from the Supermultiplier. Review of Political Economy, 1–26. doi:10.1080/09538259.2022.2092998.

Tripura, T., & Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations. arXiv, preprint arXiv:2205.02191.

Kai, Y., Chen, S., Zhang, K., & Yin, Z. (2022). Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves in Random and Complex Media, 1–12. doi:10.1080/17455030.2022.2044541.

Chen, Z., Churchill, V., Wu, K., & Xiu, D. (2022). Deep neural network modeling of unknown partial differential equations in nodal space. Journal of Computational Physics, 449, 110782. doi:10.1016/j.jcp.2021.110782.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Neural operator: Graph kernel network for partial differential equations. arXiv, preprint arXiv:2003.03485.

Yang, X., Liu, Y., & Park, G. K. (2020). Parameter estimation of uncertain differential equation with application to financial market. Chaos, Solitons and Fractals, 139, 110026. doi:10.1016/j.chaos.2020.110026.

Mohammadi, A., & Rezvani, M. H. (2019). A novel optimized approach for resource reservation in cloud computing using producer–consumer theory of microeconomics. Journal of Supercomputing, 75(11), 7391–7425. doi:10.1007/s11227-019-02951-1.

Patankar, N., Fell, H. G., Rodrigo de Queiroz, A., Curtis, J., & DeCarolis, J. F. (2022). Improving the representation of energy efficiency in an energy system optimization model. Applied Energy, 306, 118083. doi:10.1016/j.apenergy.2021.118083.

López-Ospina, H., Agudelo-Bernal, Á., Reyes-Muñoz, L., Zambrano-Rey, G., & Pérez, J. (2021). Design of a location and transportation optimization model including quality of service using constrained multinomial logit. Applied Mathematical Modelling, 89, 428–453. doi:10.1016/j.apm.2020.07.054.

Ahmed, S. A., Qazza, A., & Saadeh, R. (2022). Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms, 11(6), 247. doi:10.3390/axioms11060247.

Goswami, S., Kontolati, K., Shields, M. D., & Karniadakis, G. E. (2022). Deep transfer operator learning for partial differential equations under conditional shift. Nature Machine Intelligence, 4(12), 1155–1164. doi:10.1038/s42256-022-00569-2.

Jajić, I., Herceg, T., & Pejić Bach, M. (2022). Deployment of the Microeconomic Consumer Theory in the Artificial Neural Networks Modelling: Case of Organic Food Consumption. Mathematics, 10(17), 3215. doi:10.3390/math10173215.

Zhang, C., Su, B., Zhou, K., & Sun, Y. (2020). A multi-dimensional analysis on microeconomic factors of China’s industrial energy intensity (2000–2017). Energy Policy, 147, 111836. doi:10.1016/j.enpol.2020.111836.

Pramanik, P., & Polansky, A. M. (2023). Optimization of a dynamic profit function using Euclidean path integral. SN Business & Economics, 4(1), 8. doi:10.1007/s43546-023-00602-5.

Guo, Q., Sun, Y., Schonfeld, P., & Li, Z. (2021). Time-dependent transit fare optimization with elastic and spatially distributed demand. Transportation Research Part A: Policy and Practice, 148, 353–378. doi:10.1016/j.tra.2021.04.002.

Wang, N., Verzijlbergh, R. A., Heijnen, P. W., & Herder, P. M. (2023). Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies. Energy, 276, 127558. doi:10.1016/j.energy.2023.127558.

Jara-Díaz, S., Latournerie, A., Tirachini, A., & Quitral, F. (2022). Optimal pricing and design of station-based bike-sharing systems: A microeconomic model. Economics of Transportation, 31, 100273. doi:10.1016/j.ecotra.2022.100273.

Tulchynska, S., Popelo, O., Vovk, O., Dergaliuk, B., Kreidych, I., & Tkachenko, T. (2021). The resource supply of innovation and investment strategies of the microeconomic systems modernization in the conditions of digitalization. WSEAS Transactions on Environment and Development, 17, 819–828. doi:10.37394/232015.2021.17.77.

Hoshovska, O., Poplavska, Z., Kryvinska, N., & Horbal, N. (2020). Considering random factors in modeling complex microeconomic systems. Mathematics, 8(8), 1206. doi:10.3390/MATH8081206.

Ferchiou, A., Lhermie, G., & Raboisson, D. (2021). New standards in stochastic simulations of dairy cow disease modelling: Bio-economic dynamic optimization for rational health management decision-making. Agricultural Systems, 194, 103249. doi:10.1016/j.agsy.2021.103249.

Antweiler, W. (2021). Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization. Energy Economics, 101, 105390. doi:10.1016/j.eneco.2021.105390.

Taiebat, M., Stolper, S., & Xu, M. (2019). Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound. Applied Energy, 247, 297–308. doi:10.1016/j.apenergy.2019.03.174.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-09

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 shumin wei