Aspect-Level Sentiment Analysis through Aspect-Oriented Features
Abstract
Doi: 10.28991/HIJ-2024-05-01-09
Full Text: PDF
Keywords
References
Li, F., Larimo, J., & Leonidou, L. C. (2021). Social media marketing strategy: definition, conceptualization, taxonomy, validation, and future agenda. Journal of the Academy of Marketing Science, 49(1), 51–70. doi:10.1007/s11747-020-00733-3.
Sonai, K., Anbananthen, M., Mohamed, A., & Elyasir, H. (2013). Evolution of Opinion Mining. Australian Journal of Basic and Applied Sciences, 7(6), 359–370.
Brauwers, G., & Frasincar, F. (2022). A Survey on Aspect-Based Sentiment Classification. ACM Computing Surveys, 55(4). doi:10.1145/3503044.
Dietterich, T.G. (2002). Ensemble Learning. The Handbook of Brain Theory and Neural Networks, 2(1), 110-125.
Jiang, L., Li, Y., Liao, J., Zou, Z., & Jiang, C. (2023). Research on non-dependent aspect-level sentiment analysis. Knowledge-Based Systems, 266. doi:10.1016/j.knosys.2023.110419.
Xue, W., & Li, T. (2018). Aspect based sentiment analysis with gated convolutional networks. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 2514–2523. doi:10.18653/v1/p18-1234.
Forsyth, D. A., Mundy, J. L., di Gesú, V., Cipolla, R., LeCun, Y., Haffner, P., ... & Bengio, Y. (1999). Object recognition with gradient-based learning. Shape, contour and grouping in computer vision, 319-345. doi:10.1007/3-540-46805-6_19.
Du, C., Sun, H., Wang, J., Qi, Q., Liao, J., Xu, T., & Liu, M. (2019). Capsule network with interactive attention for aspect-level sentiment classification. EMNLP-IJCNLP- 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 5489–5498. doi:10.18653/v1/d19-1551.
Schuster, M., & Paliwal, K. K. (1997). Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. doi:10.1109/78.650093.
Grossberg, S. (2013). Recurrent Neural Networks. Scholarpedia, 8(2), 1888. doi:10.4249/scholarpedia.1888.
Sun, B., Song, X., Li, W., Liu, L., Gong, G., & Zhao, Y. (2024). A user review data-driven supplier ranking model using aspect-based sentiment analysis and fuzzy theory. Engineering Applications of Artificial Intelligence, 127, 107224. doi:10.1016/j.engappai.2023.107224.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Han, Y., Liu, M., & Jing, W. (2020). Aspect-Level Drug Reviews Sentiment Analysis Based on Double BiGRU and Knowledge Transfer. IEEE Access, 8, 21314–21325. doi:10.1109/ACCESS.2020.2969473.
Huang, B., Guo, R., Zhu, Y., Fang, Z., Zeng, G., Liu, J., Wang, Y., Fujita, H., & Shi, Z. (2022). Aspect-level sentiment analysis with aspect-specific context position information. Knowledge-Based Systems, 243. doi:10.1016/j.knosys.2022.108473.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint, 1-15. doi:10.48550/arXiv.1406.1078.
Tang, J., Lu, Z., Su, J., Ge, Y., Song, L., Sun, L., & Luo, J. (2020). Progressive self-supervised attention learning for aspect-level sentiment analysis. ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 557–566. doi:10.18653/v1/p19-1053.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. doi:10.1016/j.neunet.2005.06.042.
Sun, K., Zhang, R., Mensah, S., Mao, Y., & Liu, X. (2019). Aspect-level sentiment analysis via convolution over dependency tree. EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 5679–5688. doi:10.18653/v1/d19-1569.
Jiang, B., Xu, G., & Liu, P. (2023). Aspect-level sentiment classification via location enhanced aspect-merged graph convolutional networks. Journal of Supercomputing, 79(9), 9666–9691. doi:10.1007/s11227-022-05002-4.
Zhou, J., Huang, J. X., Hu, Q. V., & He, L. (2020). SK-GCN: Modeling Syntax and Knowledge via Graph Convolutional Network for aspect-level sentiment classification. Knowledge-Based Systems, 205. doi:10.1016/j.knosys.2020.106292.
Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for earning in raph domains. Proceedings of the International Joint Conference on Neural Networks, 2, 729–734. doi:10.1109/IJCNN.2005.1555942.
Xin, X., Wumaier, A., Kadeer, Z., & He, J. (2023). SSEMGAT: Syntactic and Semantic Enhanced Multi-Layer Graph Attention Network for Aspect-Level Sentiment Analysis. Applied Sciences (Switzerland), 13(8), 5085. doi:10.3390/app13085085.
Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A., & Bengio, Y. (2018). Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings. doi:10.1007/978-3-031-01587-8_7.
Zhang, M., & Qian, T. (2020). Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis. EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 3540–3549. doi:10.18653/v1/2020.emnlp-main.286.
Hu, Z., Wang, Z., Wang, Y., & Tan, A. H. (2023). MSRL-Net: A multi-level semantic relation-enhanced learning network for aspect-based sentiment analysis. Expert Systems with Applications, 217. doi:10.1016/j.eswa.2022.119492.
Ray, P., & Chakrabarti, A. (2022). A Mixed approach of Deep Learning method and Rule-Based method to improve Aspect Level Sentiment Analysis. Applied Computing and Informatics, 18(1–2), 163–178. doi:10.1016/j.aci.2019.02.002.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323. doi:10.1109/5.726791.
Cai, H., Tu, Y., Zhou, X., Yu, J., & Xia, R. (2020). Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network. COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference, 833–843. doi:10.18653/v1/2020.coling-main.72.
Wang, Y., Huang, M., Sun, A., & Zhu, X. (2019). Aspect-level sentiment analysis using AS-capsules. The Web Conference 2019 - Proceedings of the World Wide Web Conference, 2033–2044. doi:10.1145/3308558.3313750.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019 - Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 4171–4186. doi:10.48550/arXiv.1810.04805.
Anbananthen, S. K., Sainarayanan, G., Chekima, A., & Teo, J. (2006, April). Data mining using pruned artificial neural network tree (ANNT). 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 1350-1356. doi:10.1109/ictta.2006.1684577.
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: Aspect Based Sentiment Analysis. 8th International Workshop on Semantic Evaluation, SemEval 2014 - Co-Located with the 25th International Conference on Computational Linguistics, COLING 2014, 27–35. doi:10.3115/v1/s14-2004.
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., & Androutsopoulos, I. (2015). SemEval-2015 Task 12: Aspect Based Sentiment Analysis. SemEval 2015 - 9th International Workshop on Semantic Evaluation, Co-Located with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2015 - Proceedings, 486–495. doi:10.18653/v1/s15-2082.
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jiménez-Zafra, S. M., & Eryigit, G. (2016). SemEval-2016 Task 5: Aspect based sentiment analysis. SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings, 19–30. doi:10.18653/v1/s16-1002.
Hoang, M., Alija Bihorac, O., & Rouces, J. (2019). Aspect-Based Sentiment Analysis Using BERT. Proceedings of the 22nd Nordic Conference on Computational Linguistics, 187–196.
Liang, B., Su, H., Gui, L., Cambria, E., & Xu, R. (2022). Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Systems, 235. doi:10.1016/j.knosys.2021.107643.
Yadav, R. K., Jiao, L., Goodwin, M., & Granmo, O. C. (2021). Positionless aspect-based sentiment analysis using attention mechanism. Knowledge-Based Systems, 226. doi:10.1016/j.knosys.2021.107136.
Zhou, T., & Law, K. M. Y. (2022). Semantic Relatedness Enhanced Graph Network for aspect category sentiment analysis. Expert Systems with Applications, 195, 116560. doi:10.1016/j.eswa.2022.116560.
Tensorflow. (2023). Create production-grade machine learning models with TensorFlow, Tensorflow. Available online: https://github.com/tensorflow/tensorflow (accessed on January 2024).
DOI: 10.28991/HIJ-2024-05-01-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mikail Bin Muhammad Azman Busst, Kalaiarasi Sonai Muthu Anbananthen, Subarmaniam Kannan