Simulation of Vehicular Bots-Based DDoS Attacks in Connected Vehicles Networks

Siti Fatimah Abdul Razak, Ku Yee Fang, Noor Hisham Kamis, Anang Hudaya Muhammad Amin, Sumendra Yogarayan

Abstract


Connected vehicles are more vulnerable to attacks than wired networks since they involve rapid mobility, continuous data flow across connected nodes, and dynamic network design in a distributed network environment. Distributed Denial of Service (DDOS) is one of the most common and dangerous security attacks on connected vehicle networks. Attackers can remotely control malicious nodes that are programmed to attack other nodes known. The compromised nodes are known as botnets, which will constantly flood the target nodes with User Datagram Protocol (UDP) packets, disrupting the target nodes data flow and operation. Hence, the goal of this research is to create and simulate a vehicular bot-based Distributed Denial of Service (DDoS) assault in connected vehicle networks. A simulation-based methodology is implemented to observe the impact of the number of bots, DDoS rate, and maximum bulk packet size on network performance. Using the NS-3 network simulator, 73 random mobile vehicle nodes with up to 100 vehicle bots were simulated, and the results are discussed. Regardless of the computational constraints, the findings from this study adds to understanding the risks and problems associated with data transmission by analyzing the impact of vehicular bot-based DDoS attacks on connected vehicle performance.

 

Doi: 10.28991/HIJ-2023-04-04-014

Full Text: PDF


Keywords


Vehicular Bot Nodes; VANET; Distributed Denial of Services; NS3.

References


Banafshehvaragh, S. T., & Rahmani, A. M. (2023). Intrusion, anomaly, and attack detection in smart vehicles. Microprocessors and Microsystems, 96. doi:10.1016/j.micpro.2022.104726.

Vamshi Krishna, K., & Ganesh Reddy, K. (2023). Classification of Distributed Denial of Service Attacks in VANET: A Survey. Wireless Personal Communications, 132(2), 933–964. doi:10.1007/s11277-023-10643-6.

Dibaei, M., Zheng, X., Jiang, K., Abbas, R., Liu, S., Zhang, Y., Xiang, Y., & Yu, S. (2020). Attacks and defences on intelligent connected vehicles: a survey. Digital Communications and Networks, 6(4), 399–421. doi:10.1016/j.dcan.2020.04.007.

Wei, T. Z., Razak, S. F. A., & Kamis, N. H. (2022). Secure Communication for Connected Vehicles Safety Applications. IEEE 13th Control and System Graduate Research Colloquium, Conference Proceedings, 71–76. doi:10.1109/ICSGRC55096.2022.9845160.

Zaidi, T., & Faisal, S. (2018). An overview: Various attacks in VANET. In 2018 4th International Conference on Computing Communication and Automation (ICCCA), 1-6. doi:10.1109/CCAA.2018.8777538

Baharlouei, H., Makanju, A., & Zincir-Heywood, N. (2022). Exploring Realistic VANET Simulations for Anomaly Detection of DDoS Attacks. IEEE Vehicular Technology Conference, Helsinki, Finland. doi:10.1109/VTC2022-Spring54318.2022.9860624.

Hezam Al Junaid, M. A., Syed, A. A., Mohd Warip, M. N., Fazira Ku Azir, K. N., & Romli, N. H. (2018). Classification of Security Attacks in VANET: A Review of Requirements and Perspectives. MATEC Web of Conferences, 150. doi:10.1051/matecconf/201815006038.

Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., & Zeng, X. (2019). A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. IEEE Access, 7, 154560–154571. doi:10.1109/ACCESS.2019.2948382.

Sharma, S., & Kaul, A. (2018). A survey on Intrusion Detection Systems and Honeypot based proactive security mechanisms in VANETs and VANET Cloud. Vehicular Communications, 12, 138–164. doi:10.1016/j.vehcom.2018.04.005.

Kadri, M. R., Abdelli, A., Ben Othman, J., & Mokdad, L. (2024). Survey and classification of Dos and DDoS attack detection and validation approaches for IoT environments. Internet of Things (Netherlands), 25. doi:10.1016/j.iot.2023.101021.

Kolandaisamy, R., Md Noor, R., Ahmedy, I., Ahmad, I., Reza Z’Aba, M., Imran, M., & Alnuem, M. (2018). A Multivariant Stream Analysis Approach to Detect and Mitigate DDoS Attacks in Vehicular Ad Hoc Networks. Wireless Communications and Mobile Computing, 2874509. doi:10.1155/2018/2874509.

Adhikary, K., Bhushan, S., Kumar, S., & Dutta, K. (2020). Hybrid Algorithm to Detect DDoS Attacks in VANETs. Wireless Personal Communications, 114(4), 3613–3634. doi:10.1007/s11277-020-07549-y.

Gad, A. R., Nashat, A. A., & Barkat, T. M. (2021). Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset. IEEE Access, 9, 142206–142217. doi:10.1109/ACCESS.2021.3120626.

Nandy, T., Noor, R. M., Yamani Idna Bin Idris, M., & Bhattacharyya, S. (2020). T-BCIDS: Trust-Based Collaborative Intrusion Detection System for VANET. In 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications, NCETSTEA 2020. Trust-Based Collaborative Intrusion Detection System for VANET, Durgapur, India. doi:10.1109/NCETSTEA48365.2020.9119934.

Shu, J., Zhou, L., Zhang, W., Du, X., & Guizani, M. (2021). Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4519–4530. doi:10.1109/TITS.2020.3027390.

Siddiqui, A. J., & Boukerche, A. (2018). On the Impact of DDoS Attacks on Software-Defined Internet-of-Vehicles Control Plane. 2018 14th International Wireless Communications and Mobile Computing Conference, IWCMC 2018, 1284–1289. doi:10.1109/IWCMC.2018.8450433.

Haydari, A., & Yilmaz, Y. (2018). Real-Time Detection and Mitigation of DDoS Attacks in Intelligent Transportation Systems. 2018 IEEE Intelligent Transportation Systems Conference, 1–7.

Kolandaisamy, R., Noor, R. M., Z’aba, M. R., Ahmedy, I., & Kolandaisamy, I. (2020). Adapted stream region for packet marking based on DDoS attack detection in vehicular ad hoc networks. Journal of Supercomputing, 76(8), 5948–5970. doi:10.1007/s11227-019-03088-x.

Guleria, C., & Verma, H. K. (2018). Improved detection and mitigation of DDOS attack in vehicular ad hoc network. 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, 1–4. doi:10.1109/CCAA.2018.8777539.

Garip, M. T., Reiher, P., & Gerla, M. (2018). Botveillance: A vehicular botnet surveillance attack against pseudonymous systems in VANETs. Proceedings of the 2018 11th IFIP Wireless and Mobile Networking Conference, WMNC 2018, Prague, Czech Republic. doi:10.23919/WMNC.2018.8480909.

Chaouche, Y., Renault, E., & Boussaha, R. (2023). WEKA-based Real-Time Attack Detection for VANET Simulations. In 2023 31st International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2023, Split, Croatia. doi:10.23919/SoftCOM58365.2023.10271621.

Hameed Mir, Z., & Filali, F. (2017). Large-scale simulations and performance evaluation of connected cars - A V2V communication perspective. Simulation Modelling Practice and Theory, 73, 55–71. doi:10.1016/j.simpat.2017.01.004.

Abdul Razak, S. F., Yogarayan, S., Azman, A., Abdullah, M. F. A., Muhamad Amin, A. H., & Salleh, M. (2021). Simulation framework for connected vehicles: a scoping review. F1000Research, 10(10), 1265. doi:10.12688/f1000research.73398.1.

Boeglen, H., Hilt, B., & Drouhin, F. (2017). Emulating a Realistic VANET Channel in Ns‐3. Networking Simulation for Intelligent Transportation Systems: High Mobile Wireless Nodes, 107-131. doi:10.1002/9781119407447.ch6.

Naveen, R., Chaitanya, N. S. V., Nikhil Srinivas, M., & Vineeth, N. (2020). Implementation of a Methodology for Detection and Prevention of Security Attacks in Vehicular Adhoc Networks. 2020 IEEE International Conference for Innovation in Technology, INOCON 2020. doi:10.1109/INOCON50539.2020.9298365.

Fiade, A., Yudha Triadi, A., Sulhi, A., Ummi Masruroh, S., Handayani, V., & Bayu Suseno, H. (2020). Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020. doi:10.1109/CITSM50537.2020.9268789.

Shaban, A. M., Kurnaz, S., & Shantaf, A. M. (2020). Evaluation DSDV, AODV and OLSR routing protocols in real live by using SUMO with NS3 simulation in VANET. In HORA 2020 - 2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings, 1–5. doi:10.1109/HORA49412.2020.9152903.

Ahmad, S., Raza, I., Hasan Jamal, M., Djuraev, S., Hur, S., & Ashraf, I. (2023). Central Aggregator Intrusion Detection System for Denial of Service Attacks. Computers, Materials and Continua, 74(2), 2363–2377. doi:10.32604/cmc.2023.032694.

Baccari, S., Touati, H., Hadded, M., & Muhlethaler, P. (2020). Performance Impact Analysis of Security Attacks on Cross-Layer Routing Protocols in Vehicular Ad hoc Networks. 2020 28th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2020, 1–6. doi:10.23919/SoftCOM50211.2020.9238259.

Kamboj, S., & Mann, K. S. (2018). Detection of Multiple Malicious Nodes Using Entropy for Mitigating the Effect of Denial of Service Attack in VANETs. Proceedings - 4th International Conference on Computing Sciences, ICCS 2018, 72–79. doi:10.1109/ICCS.2018.00018.

Saggi, M. K., & Kaur, R. (2015). Isolation of Sybil attack in VANET using neighboring information. Souvenir of the 2015 IEEE International Advance Computing Conference, IACC 2015, 46–51. doi:10.1109/IADCC.2015.7154666.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-04-014

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Siti Fatimah Abdul Razak, Yee Fang Ku, Noor Hisham Kamis, Anang Hudaya Muhammad Amin, Sumendra Yogarayan