An Improved Differential Evolution Algorithm for Numerical Optimization Problems
Abstract
Doi: 10.28991/HIJ-2023-04-02-014
Full Text: PDF
Keywords
References
Tansui, D., & Thammano, A. (2020). Hybrid Nature-Inspired Optimization Algorithm: Hydrozoan and Sea Turtle Foraging Algorithms for Solving Continuous Optimization Problems. IEEE Access, 8, 65780–65800. doi:10.1109/ACCESS.2020.2984023.
Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. doi:10.1016/j.aej.2021.09.013.
Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020). Differential Evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479. doi:10.1016/j.engappai.2020.103479.
de Werra, D., & Hertz, A. (1989). Tabu search techniques - A tutorial and an application to neural networks. OR Spektrum, 11(3), 131–141. doi:10.1007/BF01720782.
Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, United States. doi:10.7551/mitpress/1090.001.0001.
Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks. doi:10.1109/icnn.1995.488968.
Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39. doi:10.1109/mci.2006.329691.
Yang, X.-S. (2021). Firefly Algorithms. Nature-Inspired Optimization Algorithms, 123–139. doi:10.1016/b978-0-12-821986-7.00016-0.
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. doi:10.1007/s10898-007-9149-x.
Sheng, M., Wang, Z., Liu, W., Wang, X., Chen, S., & Liu, X. (2022). A particle swarm optimizer with multi-level population sampling and dynamic p-learning mechanisms for large-scale optimization. Knowledge-Based Systems, 242, 108382. doi:10.1016/j.knosys.2022.108382.
Ali, M. Z., Awad, N. H., Suganthan, P. N., Shatnawi, A. M., & Reynolds, R. G. (2018). An improved class of real-coded Genetic Algorithms for numerical optimization. Neurocomputing, 275, 155–166. doi:10.1016/j.neucom.2017.05.054.
Chu, X., Cai, F., Gao, D., Li, L., Cui, J., Xu, S. X., & Qin, Q. (2020). An artificial bee colony algorithm with adaptive heterogeneous competition for global optimization problems. Applied Soft Computing Journal, 93, 106391. doi:10.1016/j.asoc.2020.106391.
She, B., Fournier, A., Yao, M., Wang, Y., & Hu, G. (2022). A self-adaptive and gradient-based cuckoo search algorithm for global optimization [Formula presented]. Applied Soft Computing, 122, 108774. doi:10.1016/j.asoc.2022.108774.
Wu, J., Wang, Y. G., Burrage, K., Tian, Y. C., Lawson, B., & Ding, Z. (2020). An improved firefly algorithm for global continuous optimization problems. Expert Systems with Applications, 149, 113340. doi:10.1016/j.eswa.2020.113340.
Chen, Y., & Pi, D. (2020). An innovative flower pollination algorithm for continuous optimization problem. Applied Mathematical Modelling, 83, 237–265. doi:10.1016/j.apm.2020.02.023.
Sun, G., Yang, B., Yang, Z., & Xu, G. (2020). An adaptive differential evolution with combined strategy for global numerical optimization. Soft Computing, 24(9), 6277–6296. doi:10.1007/s00500-019-03934-3.
Deng, W., Shang, S., Cai, X., Zhao, H., Song, Y., & Xu, J. (2021). An improved differential evolution algorithm and its application in optimization problem. Soft Computing, 25(7), 5277–5298. doi:10.1007/s00500-020-05527-x.
Zeng, Z., Zhang, M., Chen, T., & Hong, Z. (2021). A new selection operator for differential evolution algorithm. Knowledge-Based Systems, 226, 107150. doi:10.1016/j.knosys.2021.107150.
Meng, Z., & Yang, C. (2022). Two-stage differential evolution with novel parameter control. Information Sciences, 596, 321–342. doi:10.1016/j.ins.2022.03.043.
Kumar, A., Biswas, P. P., & Suganthan, P. N. (2022). Differential evolution with orthogonal array‐based initialization and a novel selection strategy. Swarm and Evolutionary Computation, 68, 101010. doi:10.1016/j.swevo.2021.101010.
Houssein, E. H., Rezk, H., Fathy, A., Mahdy, M. A., & Nassef, A. M. (2022). A modified adaptive guided differential evolution algorithm applied to engineering applications. Engineering Applications of Artificial Intelligence, 113, 104920. doi:10.1016/j.engappai.2022.104920.
Deng, W., Ni, H., Liu, Y., Chen, H., & Zhao, H. (2022). An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation. Applied Soft Computing, 127, 109419. doi:10.1016/j.asoc.2022.109419.
Yi, W., Chen, Y., Pei, Z., & Lu, J. (2022). Adaptive differential evolution with ensembling operators for continuous optimization problems. Swarm and Evolutionary Computation, 69, 100994. doi:10.1016/j.swevo.2021.100994.
Thanathamathee, P., & Sawangarreerak, S. (2022). Discovering Future Earnings Patterns through FP-Growth and ECLAT Algorithms with Optimized Discretization. Emerging Science Journal, 6(6), 1328-1345. doi:10.28991/ESJ-2022-06-06-07.
Farda, I., & Thammano, A. (2022). A Self-adaptive Differential Evolution Algorithm for Solving Optimization Problems. Lecture Notes in Networks and Systems, 453 LNNS, 68–76. doi:10.1007/978-3-030-99948-3_7.
Rahnamayan, R. S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64–79. doi:10.1109/TEVC.2007.894200.
Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13(2), 398–417. doi:10.1109/TEVC.2008.927706.
Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958. doi:10.1109/TEVC.2009.2014613.
DOI: 10.28991/HIJ-2023-04-02-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Irfan Farda, Arit Thammano