Finger Vein Template Protection with Directional Bloom Filter

Jackson Horlick Teng, Thian Song Ong, Kalaiarasi S. M. A., Connie Tee

Abstract


Biometrics has become a widely accepted solution for secure user authentication. However, the use of biometric traits raises serious concerns about the protection of personal data and privacy. Traditional biometric systems are vulnerable to attacks due to the storage of original biometric data in the system. Because biometric data cannot be changed once it has been compromised, the use of a biometric system is limited by the security of its template. To protect biometric templates, this paper proposes the use of directional bloom filters as a cancellable biometric approach to transform the biometric data into a non-invertible template for user authentication purposes. Recently, Bloom filter has been used for template protection due to its efficiency with small template size, alignment invariance, and irreversibility. Directional Bloom Filter improves on the original bloom filter. It generates hash vectors with directional subblocks rather than only a single-column subblock in the original bloom filter. Besides, we make use of multiple fingers to generate a biometric template, which is termed multi-instance biometrics. It helps to improve the performance of the method by providing more information through the use of multiple fingers. The proposed method is tested on three public datasets and achieves an equal error rate (EER) as low as 5.28% in the stolen or constant key scenario. Analysis shows that the proposed method meets the four properties of biometric template protection.

 

Doi: 10.28991/HIJ-2023-04-02-013

Full Text: PDF


Keywords


Multi-Instance Finger Vein; Directional Bloom Filter; Template Protection.

References


Shaheed, K., Liu, H., Yang, G., Qureshi, I., Gou, J., & Yin, Y. (2018). A systematic review of finger vein recognition techniques. Information (Switzerland), 9(9), 213. doi:10.3390/info9090213.

Ross, A., & Jain, A. K. (2004). Multimodal biometrics: An overview. 12th European signal processing conference, 6-10 September, 2004, Vienna, Austria.

Rathgeb, C., & Uhl, A. (2011). A survey on biometric cryptosystems and cancelable biometrics. EURASIP Journal on Information Security, 2011(1), 3. doi:10.1186/1687-417X-2011-3.

ISO/IEC 24745:2011. (2011). Information technology-Security Techniques-Biometric information protection. International Organization for Standardization (ISO), Geneva, Switzerland.

Rathgeb, C., Breitinger, F., & Busch, C. (2013). Alignment-free cancelable iris biometric templates based on adaptive bloom filters. 2013 International Conference on Biometrics (ICB). doi:10.1109/icb.2013.6612976.

Gomez-Barrero, M., Rathgeb, C., Galbally, J., Busch, C., & Fierrez, J. (2016). Unlinkable and irreversible biometric template protection based on bloom filters. Information Sciences, 370–371, 18–32. doi:10.1016/j.ins.2016.06.046.

Cai, S., Yau, W. C., Ong, T. S., & Teng, J. H. (2022). Transforming Finger Vein Template in Multi-instance Scenario. 2022 10th International Conference on Information and Communication Technology (ICoICT). doi:10.1109/icoict55009.2022.9914870.

Boult, T. E., Scheirer, W. J., & Woodworth, R. (2007). Revocable fingerprint biotokens: accuracy and security analysis. 2007 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2007.383110.

Sayeed, M. S., Min, P. P., & Bari, M. A. (2022). Deep Learning Based Gait Recognition Using Convolutional Neural Network in the COVID-19 Pandemic. Emerging Science Journal, 6(5), 1086-1099. doi:10.28991/ESJ-2022-06-05-012.

Ratha, N. K., Connell, J. H., & Bolle, R. M. (2001). Enhancing security and privacy in biometrics-based authentication systems. IBM Systems Journal, 40(3), 614–634. doi:10.1147/sj.403.0614.

Bagherzadeh, S. Z., & Toosizadeh, S. (2022). Eye tracking algorithm based on multi model Kalman filter. HighTech and Innovation Journal, 3(1), 15-27. doi:10.28991/HIJ-2022-03-01-02.

Teoh, A. B. J., & Goh, A. (2006). Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1892–1901. doi:10.1109/TPAMI.2006.250.

Hämmerle-Uhl, J., Pschernig, E., Uhl, A. (2009). Cancelable Iris Biometrics Using Block Re-mapping and Image Warping. Information Security, ISC 2009. Lecture Notes in Computer Science, 5735, Springer, Berlin, Germany. doi:10.1007/978-3-642-04474-8_11.

Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2010). Sectored Random Projections for Cancelable Iris Biometrics. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. doi:10.1109/icassp.2010.5495383.

Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9), 1877–1893. doi:10.1109/TPAMI.2011.34.

Connie, T., Teoh, A., Goh, M., & Ngo, D. (2005). PalmHashing: a novel approach for cancelable biometrics. Information Processing Letters, 93(1), 1–5. doi:10.1016/j.ipl.2004.09.014.

Leng, L., & Zhang, J. (2013). PalmHash code vs. palmPhasor code. Neurocomputing, 108, 1–12. doi:10.1016/j.neucom.2012.08.028.

Li, H., Qiu, J., & Teoh, A. B. J. (2020). Palmprint template protection scheme based on randomized cuckoo hashing and MinHash. Multimedia Tools and Applications, 79(17–18), 11947–11971. doi:10.1007/s11042-019-08446-8.

Maiorana, E., Campisi, P., Fierrez, J., Ortega-Garcia, J., & Neri, A. (2010). Cancelable templates for sequence-based biometrics with application to on-line signature recognition. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 40(3), 525–538. doi:10.1109/TSMCA.2010.2041653.

Maiorana, E., Campisi, P., Ortega-Garcia, J., & Neri, A. (2008). Cancelable Biometrics for HMM-based Signature Recognition. 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems. doi:10.1109/btas.2008.4699360.

Maiorana, E., Martinez-Diaz, M., Campisi, P., Ortega-Garcia, J., & Neri, A. (2008). Template protection for HMM-based on-line signature authentication. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. doi:10.1109/cvprw.2008.4563114.

Jain, A. K., Nandakumar, K., & Nagar, A. (2008). Biometric Template Security. EURASIP Journal on Advances in Signal Processing, 2008(1), 579416. doi:10.1155/2008/579416.

Abe, N., Yamada, S., & Shinzaki, T. (2015). Irreversible fingerprint template using Minutiae Relation Code with Bloom Filter. 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS). doi:10.1109/btas.2015.7358770.

Kirchgasser, S., Kauba, C., Lai, Y. L., Zhe, J., & Uhl, A. (2020). Finger Vein Template Protection Based on Alignment-Robust Feature Description and Index-of-Maximum Hashing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(4), 337–349. doi:10.1109/TBIOM.2020.2981673.

Kirchgasser, S., Kauba, C., & Uhl, A. (2020). Cancellable Biometrics for Finger Vein Recognition—Application in the Feature Domain. Handbook of Vascular Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham, Switzerland. doi:10.1007/978-3-030-27731-4_16.

Ren, H., Sun, L., Guo, J., Han, C., & Wu, F. (2021). Finger vein recognition system with template protection based on convolutional neural network. Knowledge-Based Systems, 227, 107159. doi:10.1016/j.knosys.2021.107159.

Ghouzali, S., Nafea, O., Wadood, A., & Hussain, M. (2021). Cancelable multimodal biometrics based on chaotic maps. Applied Sciences (Switzerland), 11(18), 8573. doi:10.3390/app11188573.

Bassit, A., Hahn, F., Veldhuis, R., & Peter, A. (2022). Hybrid biometric template protection: Resolving the agony of choice between bloom filters and homomorphic encryption. IET Biometrics, 11(5), 430–444. doi:10.1049/bme2.12075.

Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, Vol. 1496. Springer, Berlin, Germany. doi:10.1007/BFb0056195.

Ton, B. T., & Veldhuis, R. N. J. (2013). A high quality finger vascular pattern dataset collected using a custom designed capturing device. 2013 International Conference on Biometrics (ICB). doi:10.1109/icb.2013.6612966.

Kauba, C., Prommegger, B., & Uhl, A. (2018). The Two Sides of the Finger - An Evaluation on the Recognition Performance of Dorsal vs. Palmar Finger-Veins. 2018 International Conference of the Biometrics Special Interest Group (BIOSIG). doi:10.23919/biosig.2018.8553277.

Sudha, D., & Ramakrishna, M. (2017). Comparative Study of Features Fusion Techniques. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.39.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-02-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jackson Horlick Teng, Thian Song Ong, Kalaiarasi S. M. A., Connie Tee