Impact of Climate Change on the Performance of Household-Scale Photovoltaic Systems
Abstract
Doi: 10.28991/HIJ-2024-05-01-01
Full Text: PDF
Keywords
References
Simioni, T., & Schaeffer, R. (2019). Georeferenced operating-efficiency solar potential maps with local weather conditions – An application to Brazil. Solar Energy, 184, 345–355. doi:10.1016/j.solener.2019.04.006.
Singh, P., & Ravindra, N. M. (2012). Temperature dependence of solar cell performance - An analysis. Solar Energy Materials and Solar Cells, 101, 36–45. doi:10.1016/j.solmat.2012.02.019.
Schuster, C. S. (2020). The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. Renewable Energy, 152, 1186–1191. doi:10.1016/j.renene.2020.01.076.
Campos, J., Csontos, C., & Munkácsy, B. (2023). Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition. Energy, 278. doi:10.1016/j.energy.2023.127971.
Atsu, D., Seres, I., & Farkas, I. (2021). The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary. Renewable and Sustainable Energy Reviews, 141. doi:10.1016/j.rser.2021.110808.
Madaleno, M., Ahmed, Z., Doğan, B., Javeed, S., & Vasa, L. (2023). The aptness of import-led growth hypothesis for sustainable development in South Asia: Do energy utilization and natural resources matter? Resources Policy, 86. doi:10.1016/j.resourpol.2023.104262.
Baglivo, C., Congedo, P. M., & Mazzeo, D. (2023). Scenarios for urban resilience—perspective on climate change resilience at the end of the 21st century of a photovoltaic-powered mixed-use energy community in two European capitals. Adapting the Built Environment for Climate Change: Design Principles for Climate Emergencies, Woodhead Publishing, 37–52. doi:10.1016/B978-0-323-95336-8.00012-3.
Copiello, S., & Grillenzoni, C. (2017). Solar Photovoltaic Energy and Its Spatial Dependence. Energy Procedia, 141, 86–90. doi:10.1016/j.egypro.2017.11.017.
Oka, K., Mizutani, W., & Ashina, S. (2020). Climate change impacts on potential solar energy production: A study case in Fukushima, Japan. Renewable Energy, 153, 249–260. doi:10.1016/j.renene.2020.01.126.
Abdulai, D., Gyamfi, S., Diawuo, F. A., & Acheampong, P. (2023). Data analytics for prediction of solar PV power generation and system performance: A real case of Bui Solar Generating Station, Ghana. Scientific African, 21. doi:10.1016/j.sciaf.2023.e01894.
Ghimire, S., Deo, R. C., Casillas-Pérez, D., & Salcedo-Sanz, S. (2022). Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Applied Energy, 316. doi:10.1016/j.apenergy.2022.119063.
Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, 130. doi:10.1016/j.pce.2023.103389.
Chukwujindu Nwokolo, S., Ogbulezie, J. C., & Umunnakwe Obiwulu, A. (2022). Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Advances in Space Research, 70(11), 3614–3637. doi:10.1016/j.asr.2022.08.010.
Svazas, A.M., Navickas, V., Paskevicius, R., Bilan, Y. & Vasa, L. (2023). Renewable Energy versus Energy Security: The Impact of In-Novation on the Economy. Rynek Energii 164(1), 60-71.
Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R.A., Rogner, H.-H. , & Victor, N. (2000). Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
Riahi, K., & Krey, V. (2023)....International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Available online: https://iiasa.ac.at/models-tools-data/rcp (accessed on June 2023).
Mester, M., A. (2015). Comparison of new RCP emission scenarios for estimating global climate change. ELTE, Budapest, Hungary. Available online: https://nimbus.elte.hu/tanszek/docs/BSc/2015/MesterMateAttila_2015.pdf (accessed on May 2023).
He, T., Wang, D., & Qu, Y. (2017). Land surface albedo. Comprehensive Remote Sensing, 1–9, 140–162. doi:10.1016/B978-0-12-409548-9.10370-7.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213–241. doi:10.1007/s10584-011-0156-z.
Van Vuuren, D. P., Den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., Wonink, S., & Van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81(2), 119–159. doi:10.1007/s10584-006-9172-9.
Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J. & Richels, R. (2007). Scenarios of Greenhouse Gas Emissions and Atmopheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological & Environmental Research, 154, Washington, United States.
Smith, S. J., & Wigley, T. M. L. (2006). Multi-gas forcing stabilization with minicam. Energy Journal, 27, 373–391. doi:10.5547/issn0195-6574-ej-volsi2006-nosi3-19.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186. doi:10.1126/science.1168475.
Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy Journal, 27, 343–353. doi:10.5547/issn0195-6574-ej-volsi2006-nosi3-17.
Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935. doi:10.1016/j.techfore.2006.05.026.
Márton, Z., Szabó, B., Vad, C. F., Pálffy, K., & Horváth, Z. (2023). Environmental changes associated with drying climate are expected to affect functional groups of pro-and microeukaryotes differently in temporary saline waters. Scientific Reports, 13(1), 3243. doi:10.1186/s12302-023-00745-0.
Meteonorm (2023). Meteonorm offers unique access to the Global Energy Balance Archive Data, Meteonorm Data sources. Available online: https://meteonorm.com/en/meteonorm-features (accessed on June 2023).
IIASA. (2009). RCP Database Version 2.0.5. International Institute for Applied Systems Analysis. Laxenburg, Austria. Available online: https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=compare (accessed on June 2023).
Li, J., Li, Y., Zhu, B., & Ma, X. (2021). Analysis of hydrogen production capacity of off-grid photovoltaic system based on PVsyst software simulation. Journal of Physics: Conference Series, 2076(1), 12005. doi:10.1088/1742-6596/2076/1/012005.
Bhuvaneswari, B., D, S., & Memala, W. A. (2022). Performance Analysis of Stand-Alone Photovoltaic System Using PVsyst. ECS Transactions, 107(1), 11533–11541. doi:10.1149/10701.11533ecst.
Ready, J. F. (1997). Care and Maintenance of Lasers. Industrial Applications of Lasers, 193–214. doi:10.1016/b978-012583961-7/50008-9.
Markvart, T., & Castañer, L. (2018). Principles of solar cell operation. McEvoy’s Handbook of Photovoltaics: Fundamentals and Applications, 3–28. doi:10.1016/B978-0-12-809921-6.00001-X.
Perez, R., Ineichen, P., Seals, R., Michalsky, J., & Stewart, R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271–289. doi:10.1016/0038-092X(90)90055-H.
Seapan, M., Hishikawa, Y., Yoshita, M., & Okajima, K. (2020). Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Solar Energy, 204, 459–465. doi:10.1016/j.solener.2020.05.019.
Meloun, M., & Militký, J. Correlation. Statistical Data Analysis, 631–666. doi:10.1533/9780857097200.631.
OMSZ (2023). The Hungarian Meteorological Service (OMSZ). OMSZ Informatics and Methodology Department, Budapest, Hungary. Available online: https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/ (accessed on June 2023).
Schaeffer, R., Szklo, A. S., Pereira de Lucena, A. F., Moreira Cesar Borba, B. S., Pupo Nogueira, L. P., Fleming, F. P., Troccoli, A., Harrison, M., & Boulahya, M. S. (2012). Energy sector vulnerability to climate change: A review. Energy, 38(1), 1–12. doi:10.1016/j.energy.2011.11.056.
Gaetani, M., Huld, T., Vignati, E., Monforti-Ferrario, F., Dosio, A., & Raes, F. (2014). The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments. Renewable and Sustainable Energy Reviews, 38, 706–716. doi:10.1016/j.rser.2014.07.041.
Dutta, R., Chanda, K., & Maity, R. (2022). Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renewable Energy, 188, 819–829. doi:10.1016/j.renene.2022.02.023.
Crook, J. A., Jones, L. A., Forster, P. M., & Crook, R. (2011). Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy and Environmental Science, 4(9), 3101–3109. doi:10.1039/c1ee01495a.
Gernaat, D. E. H. J., de Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., & van Vuuren, D. P. (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11(2), 119–125. doi:10.1038/s41558-020-00949-9.
DOI: 10.28991/HIJ-2024-05-01-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nándor Bozsik, András Szeberényi, Norbert Bozsik