Deep Learning: A Study of Pattern Recognition for Personalized Clothing
Abstract
Doi: 10.28991/HIJ-2023-04-03-03
Full Text: PDF
Keywords
References
Singh, A., & Chakraborty, S. (2020). Deep Active Transfer Learning for Image Recognition. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom. doi:10.1109/ijcnn48605.2020.9207391.
Wang, K., Chen, K., Du, H., Liu, S., Xu, J., Zhao, J., Chen, H., Liu, Y., & Liu, Y. (2022). New image dataset and new negative sample judgment method for crop pest recognition based on deep learning models. Ecological Informatics, 69, 101620. doi:10.1016/j.ecoinf.2022.101620.
Yang, X., Zhang, Y., Lv, W., & Wang, D. (2021). Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy, 163, 386–397. doi:10.1016/j.renene.2020.08.125.
Yang, L., Li, Z., Ma, S., & Yang, X. (2022). Artificial intelligence image recognition based on 5G deep learning edge algorithm of Digestive endoscopy on medical construction. Alexandria Engineering Journal, 61(3), 1852–1863. doi:10.1016/j.aej.2021.07.007.
Anubha Pearline, S., Sathiesh Kumar, V., & Harini, S. (2019). A study on plant recognition using conventional image processing and deep learning approaches. Journal of Intelligent & Fuzzy Systems, 36(3), 1997–2004. doi:10.3233/JIFS-169911.
Zhang, Y., Zhang, Z., Huo, L., Xie, B., & Wang, X. (2021). Image Saliency Detection via Two-Stream Feature Fusion and Adversarial Learning. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design & Computer Graphics, 33(3), 376–384. doi:10.3724/SP.J.1089.2021.18438.
Tsuiki, S., Nagaoka, T., Fukuda, T., Sakamoto, Y., Almeida, F. R., Nakayama, H., Inoue, Y., & Enno, H. (2021). Machine learning for image-based detection of patients with obstructive sleep apnea: an exploratory study. Sleep & Breathing, 25(4), 2297–2305. doi:10.1007/s11325-021-02301-7.
Vinolin, V., & Sucharitha, M. (2022). Taylor-rider-based deep convolutional neural network for image forgery detection in 3D lighting environment. Data Technologies and Applications, 56(1), 103–131. doi:10.1108/DTA-10-2020-0234.
Zhang, Y., Lv, C., Wang, D., Mao, W., & Li, J. (2022). A novel image detection method for internal cracks in corn seeds in an industrial inspection line. Computers and Electronics in Agriculture, 197, 106930–. doi:10.1016/j.compag.2022.106930.
Wang, C., Wang, Q., Wu, H., Zhao, C., Teng, G., & Li, J. (2021). Low-Altitude Remote Sensing Opium Poppy Image Detection Based on Modified YOLOv3. Remote Sensing, 13(11), 2130. doi:10.3390/rs13112130.
Selvathi, D., & Chandralekha, R. (2021). Fetal biometric based abnormality detection during prenatal development using deep learning techniques. Multidimensional Systems and Signal Processing, 33(1), 1–15. doi:10.1007/s11045-021-00765-0.
Nikolova, D., Vladimirov, I., & Terneva, Z. (2021). Human Action Recognition for Pose-based Attention: Methods on the Framework of Image Processing and Deep Learning. 2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Sozopol, Bulgaria. doi:10.1109/icest52640.2021.9483503.
Aizezi, Y., Jiamali, A., Abudurexiti, R., Liu, X., Du, J., & Ding, L. (2018). Research on Image Recognition Method Based on Deep Learning Algorithm. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). doi:10.1109/avss.2018.8639372.
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. doi:10.48550/arXiv.2004.10934.
Zhang, S., & Zhou, X. (2021). MicroNet: Realizing Micro Neural Network via Binarizing GhostNet. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). doi:10.1109/icsp51882.2021.9408972.
Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. doi:10.48550/arXiv.1708.07747.
Liu, Z., Luo, P., Qiu, S., Wang, X., & Tang, X. (2016). DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.124.
Pham, M.-T., & Lefevre, S. (2018). Buried Object Detection from B-Scan Ground Penetrating Radar Data Using Faster-RCNN. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss.2018.8517683.
Sogabe, M., Ito, N., Miyazaki, T., Kawase, T., Kanno, T., & Kawashima, K. (2022). Detection of Instruments Inserted into Eye in Cataract Surgery Using Single-shot Multibox Detector. Sensors and Materials, 34(1), 47–54. doi:10.18494/SAM3762.
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint. doi:10.48550/arXiv.1804.02767.
Li, Y., Li, J., & Meng, P. (2023). Attention-YOLOV4: a real-time and high-accurate traffic sign detection algorithm. Multimedia Tools and Applications, 82(5), 7567–7582. doi:10.1007/s11042-022-13251-x.
DOI: 10.28991/HIJ-2023-04-03-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JIng Zhao, Hongdi Zhu, Bing Liu