Comprehensive Evaluation of Deep Neural Network Architectures for Parawood Pith Estimation
Abstract
Doi: 10.28991/HIJ-2023-04-03-06
Full Text: PDF
Keywords
References
Islam, M. N., Rahman, F., Das, A. K., & Hiziroglu, S. (2022). An overview of different types and potential of bio-based adhesives used for wood products. International Journal of Adhesion and Adhesives, 112, 102992. doi:10.1016/j.ijadhadh.2021.102992.
Hakkou, M., Pétrissans, M., Zoulalian, A., & Gérardin, P. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability, 89(1), 1–5. doi:10.1016/j.polymdegradstab.2004.10.017.
Denih, A., Putra, G. R., Kurniawan, Z., & Bahtiar, E. T. (2023). Developing a Model for Curve-Fitting a Tree Stem’s Cross-Sectional Shape and Sapwood–Heartwood Transition in a Polar Diagram System Using Nonlinear Regression. Forests, 14(6), 1102. doi:10.3390/f14061102.
Hänsel, A., Sandak, J., Sandak, A., Mai, J., & Niemz, P. (2022). Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Material Science & Engineering, 17(3), 230-241. doi:10.1080/17480272.2021.1925963.
Longuetaud, F., Schraml, R., Mothe, F., Ravoajanahary, T., Decelle, R., Constant, T., ... & Uhl, A. (2023). Traceability and quality assessment of Norway spruce (Picea abies (L.) H. Karst.) logs: the TreeTrace_spruce database. Annals of Forest Science, 80(1), 9. doi:10.1186/s13595-023-01178-8.
Longuetaud, F., Pot, G., Mothe, F., Barthelemy, A., Decelle, R., Delconte, F., ... & Viguier, J. (2022). TreeTrace project database on traceability and quality assessment of round woods: Douglas fir sampling. Annals of Forest Science, 79(46), 1-22. doi:10.1186/s13595-022-01163-7.
Longuetaud, F., Leban, J. M., Mothe, F., Kerrien, E., & Berger, M. O. (2004). Automatic detection of pith on CT images of spruce logs. Computers and Electronics in Agriculture, 44(2), 107–119. doi:10.1016/j.compag.2004.03.005.
Entacher, K., Hegenbart, S., Kerschbaumer, J., Lenz, C., Planitzer, D., Seidel, M., Uhl, A., & Weiglmaier, R. (2008). Pith detection on CT-Cross-Section images of logs: An experimental comparison. 2008 3rd International Symposium on Communications, Control and Signal Processing. doi:10.1109/isccsp.2008.4537273.
Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., & Mothe, F. (2012). Knot Detection in X-Ray CT Images of Wood. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, 7432, Springer, Berlin, Germany. doi:10.1007/978-3-642-33191-6_21.
Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban, J. M., & Mothe, F. (2012). PithExtract: A robust algorithm for pith detection in computer tomography images of wood – Application to 125 logs from 17 tree species. Computers and Electronics in Agriculture, 85, 90–98. doi:10.1016/j.compag.2012.03.012.
Kurdthongmee, W., Suwannarat, K., Panyuen, P., & Sae-Ma, N. (2018). A Fast Algorithm to Approximate the Pith Location of Rubberwood Timber from a Normal Camera Image. 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), Nakhonpathom, Thailand. doi:10.1109/jcsse.2018.8457375.
Kurdthongmee, W., & Suwannarat, K. (2019). An efficient algorithm to estimate the pith location on an untreated end face image of a rubberwood log taken with a normal camera. European Journal of Wood and Wood Products, 77(5), 919–929. doi:10.1007/s00107-019-01433-8.
Hanning, T., Kickingereder, R., & Casasent, D. (2003). Determining the average annual ring width on the front side of lumber. Optical Measurement Systems for Industrial Inspection III, Munich, Germany. doi:10.1117/12.500200.
Österberg, P., Ihalainen, H., & Ritala, R. (2004). Method for analyzing and classifying wood quality through local 2d-spectrum of digital log end images. Proceedings of International Conference on Advanced Optical Diagnostics in Fluids, Solids and Combustion, VSJ-SPIE'04, 4-6 December, 2004, Tokyo, Japan.
Norell, K., & Borgefors, G. (2008). Estimation of pith position in untreated log ends in sawmill environments. Computers and Electronics in Agriculture, 63(2), 155–167. doi:10.1016/j.compag.2008.02.006.
Kurdthongmee, W., & Suwannarat, K. (2019). Locating Wood Pith in a Wood Stem Cross Sectional Image Using YOLO Object Detection. 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), Kaohsiung, Taiwan. doi:10.1109/taai48200.2019.8959823.
Kurdthongmee, W. (2020). A comparative study of the effectiveness of using popular DNN object detection algorithms for pith detection in cross-sectional images of parawood. Heliyon, 6(2), 3480. doi:10.1016/j.heliyon.2020.e03480.
Kurdthongmee, W., Suwannarat, K., & Kiplagat, J. (2022). A Framework to Create a Deep Learning Detector from a Small Dataset: A Case of Parawood Pith Estimation. Emerging Science Journal, 7(1), 245–255. doi:10.28991/esj-2023-07-01-017.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, United States. doi:10.1109/cvpr.2016.90.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint. doi:10.48550/arxiv.1704.04861.
Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195.
Decelle, R., Ngo, P., Debled-Rennesson, I., Mothe, F., & Longuetaud, F. (2022). Ant Colony Optimization for Estimating Pith Position on Images of Tree Log Ends. Image Processing on Line, 12, 558–581. doi:10.5201/ipol.2022.338.
DOI: 10.28991/HIJ-2023-04-03-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Wattanapong Kurdthongmee