A Study of Dance Movement Capture and Posture Recognition Method Based on Vision Sensors
Abstract
Doi: 10.28991/HIJ-2023-04-02-03
Full Text: PDF
Keywords
References
Senthil Murugan, A., Suganya Devi, K., Sivaranjani, A., & Srinivasan, P. (2018). A study on various methods used for video summarization and moving object detection for video surveillance applications. Multimedia Tools and Applications, 77(18), 23273–23290. doi:10.1007/s11042-018-5671-8.
Fuggle, N. R., Lu, S., Breasail, M. Ó., Westbury, L. D., Ward, K. A., Dennison, E., Mahmoodi, S., Niranjan, M., & Cooper, C. (2022). OA22 Machine learning and computer vision of bone microarchitecture can improve the fracture risk prediction provided by DXA and clinical risk factors. Rheumatology, 61(Supplement_1). doi:10.1093/rheumatology/keac132.022.
Mahbubur Rahman, M., & Gurbuz, S. Z. (2021). Multi-Frequency RF Sensor Data Adaptation for Motion Recognition with Multi-Modal Deep Learning. 2021 IEEE Radar Conference (RadarConf21). doi:10.1109/radarconf2147009.2021.9455204.
Moreau, P., Durand, D., Bosche, J., & Lefranc, M. (2020). A motion recognition algorithm using polytopic modeling. 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). doi:10.1109/codit49905.2020.9263883.
Lee, K.-T., Yoon, H., & Lee, Y.-S. (2018). Implementation of smartwatch user interface using machine learning based motion recognition. 2018 International Conference on Information Networking (ICOIN). doi:10.1109/icoin.2018.8343229.
Balmik, A., Paikaray, A., Jha, M., & Nandy, A. (2022). Motion recognition using deep convolutional neural network for Kinect-based NAO teleoperation. Robotica, 40(9), 3233–3253. doi:10.1017/S0263574722000169.
Pribadi, T. W., & Shinoda, T. (2020). Hand Motion Recognition of Shipyard Welder Using 9-DOF Inertial Measurement Unit and Multi-Layer Perceptron Approach. IOP Conference Series: Earth and Environmental Science, 557(1). doi:10.1088/1755-1315/557/1/012009.
Rotoni, G. M., Unabia, S. A., & Villaverde, J. F. (2020). Wireless Accelerometer-based Motion Recognition Sensors for Limb Movement Analysis in Babies. Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology. doi:10.1145/3397391.3397399.
Asmaul Husna, R., Achmad, A., Ilham, A. A., Zainuddin, Z., & Jaya, A. K. (2020). Early Childhood Gymnastic Motion Recognition System Using Image Processing Technology. 2020 27th International Conference on Telecommunications (ICT). doi:10.1109/ict49546.2020.9239482.
Li, J., Zhu, K., & Pan, L. (2022). Wrist and finger motion recognition via M-mode ultrasound signal: A feasibility study. Biomedical Signal Processing and Control, 71, 103112. doi:10.1016/j.bspc.2021.103112.
Liu, Q. (2022). Human motion state recognition based on MEMS sensors and Zigbee network. Computer Communications, 181, 164–172. doi:10.1016/j.comcom.2021.10.018.
Kurban, O. C., Calik, N., & Yildirim, T. (2022). Human and action recognition using adaptive energy images. Pattern Recognition, 127, 108621. doi:10.1016/j.patcog.2022.108621.
Ding, C., Wen, S., Ding, W., Liu, K., & Belyaev, E. (2022). Temporal segment graph convolutional networks for skeleton-based action recognition. Engineering Applications of Artificial Intelligence, 110, 104675. doi:10.1016/j.engappai.2022.104675.
Li, J., Zhao, X., Zhou, G., & Zhang, M. (2022). Standardized use inspection of workers’ personal protective equipment based on deep learning. Safety Science, 150. doi:10.1016/j.ssci.2022.105689.
Lee, T. J., Kim, C. H., & Cho, D. I. D. (2019). A Monocular Vision Sensor-Based Efficient SLAM Method for Indoor Service Robots. IEEE Transactions on Industrial Electronics, 66(1), 318–328. doi:10.1109/TIE.2018.2826471.
Ayed, I., Jaume-I-capó, A., Martínez-Bueso, P., Mir, A., & Moyà-Alcover, G. (2021). Balance measurement using microsoft kinect v2: Towards remote evaluation of patient with the functional reach test. Applied Sciences (Switzerland), 11(13), 6073. doi:10.3390/app11136073.
Akhtar, M. B. (2022). The use of a convolutional neural network in detecting soldering faults from a printed circuit board assembly. HighTech and Innovation Journal, 3(1), 1-14. doi:10.28991/HIJ-2022-03-01-01.
Kurdthongmee, W., Kurdthongmee, P., Suwannarat, K., & Kiplagat, J. K. (2022). A YOLO Detector Providing Fast and Accurate Pupil Center Estimation using Regions Surrounding a Pupil. Emerging Science Journal, 6(5), 985-997. doi:10.28991/ESJ-2022-06-05-05.
Basak, H., Kundu, R., Singh, P. K., Ijaz, M. F., Woźniak, M., & Sarkar, R. (2022). A union of deep learning and swarm-based optimization for 3D human action recognition. Scientific Reports, 12(1). doi:10.1038/s41598-022-09293-8.
Yan, S., Xiong, Y., & Lin, D. (2018). Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1). doi:10.1609/aaai.v32i1.12328.
Si, C., Chen, W., Wang, W., Wang, L., & Tan, T. (2019). An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2019.00132.
Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2019.01230.
Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., & Zheng, N. (2020). Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr42600.2020.00119.
DOI: 10.28991/HIJ-2023-04-02-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Qun Wang, Gang Tong, Sichao Zhou