DSS LANDS: A Decision Support System for Agriculture in Sardinia

Gianni Fenu, Francesca Maridina Malloci

Abstract


Recently, the use of DSSs application has been strongly increasing in the agricultural sector due to continuous climate change and the need to conduct more productive and sustainable agriculture. In this paper, we describe the prototype agricultural DSS LANDS developed for monitoring the main crop production in Sardinia. The DSS collects, organizes, integrates, and analyzes several types of data with different mathematical models. In particular, a case study on forecasting potato late blight is presented. We employed the Negative Prognosis model and the Fry model to forecast the period in which it is opportune to carry out fungicide treatments useful against the appearance of the pathogen. The experiments allowed us to outline the best criteria for local conditions, and the evaluation showed the effectiveness of the approach in a concrete case study.

 

Doi: 10.28991/HIJ-2020-01-03-05

Full Text: PDF


Keywords


Decision Support System; Decision-Making; Data Analysis; Precision Farming.

References


Sivakumar, M. V. K., Motha, R. P., & Das, H. P. (Eds.). (2005). Natural Disasters and Extreme Events in Agriculture. Springer, Berlin, Heidelberg, Germany. doi:10.1007/3-540-28307-2.

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. Decision Support Systems, 33(2), 111–126. doi:10.1016/s0167-9236(01)00139-7.

Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., … Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165–174. doi:10.1016/j.agsy.2016.09.009.

Isah, S., Gbanguba, A. U., Abdullah, Y., Bubuche, T. S., & Mohammed, T. (2020). Effects of Variety and Nitrogen Levels on the Performance of Pearl Millet: Pennisetum Glaucum (L.) R. BR. Journal of Human, Earth, and Future, 1(4), 188–196. doi:10.28991/hef-2020-01-04-04.

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113–132. doi:10.1016/s0168-1699(02)00096-0.

Keen P. G. W., Morton M. S. S. (1978). Decision support systems: An organizational Perspective, MA, USA: Addison-Wesley, doi: 10.1016/b978-0-08-027321-1.50007-9.

Sheng, Y., & Zhang, S. (2009). Analysis of Problems and Trends of Decision Support Systems Development. 2009 International Conference on E-Business and Information System Security, Wuhan, China. doi:10.1109/ebiss.2009.5137932.

Turban, E., Liang, T. P., & Aronson, J. E. (2005). Decision Support Systems and Intelligent Systems: (International Edition). Pearson Prentice Hall, New Jersey, United States.

Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation problem in agricultural decision support systems: the example of vite.net®. Computers and Electronics in Agriculture, 100, 88–99. doi:10.1016/j.compag.2013.10.011.

Taechatanasat, P., & Armstrong, L. (2014). Decision support system data for farmer decision making. Proceedings of Asian Federation for Information Technology in Agriculture, 472-486. Perth, W.A. Australian Society of Information and Communication Technologies in Agriculture.

Manos, B. D., Ciani, A., Bournaris, T., Vassiliadou, I., & Papathanasiou, J. (2004). A taxonomy survey of decision support systems in agriculture. Agricultural Economics Review, 5(389-2016-23416), 80-94. doi:10.22004/ag.econ.26406.

Kerr, D. (2004). Factors influencing the Development and Adoption of Knowledge Based Decision Support Systems for Small, Owner-Operated Rural Business. Artificial Intelligence Review, 22(2), 127–147. doi:10.1023/b:aire.0000045503.74951.7a.

Jones, V. P., Brunner, J. F., Grove, G. G., Petit, B., Tangren, G. V., & Jones, W. E. (2010). A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Management Science, 66(6), 587–595. doi:10.1002/ps.1913.

Ministero delle politiche agricole alimentari e forestali (Mipaff) (2017). Linee Guida per lo Sviluppo dell'Agricoltura di Precisione in Italia (2017). Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina /12069 (accessed on May 2020).

Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G.Thorburn, P. (2015). Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling & Software, 72, 276–286. doi:10.1016/j.envsoft.2014.12.013.

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Ritchie, J. T. (2003). The DSSAT cropping system model. European journal of agronomy, 18(3-4), 235-265. doi:10.1016/s1161-0301(02)00107-7

Keating, B., Carberry, P. ., Hammer, G., Probert, M., Robertson, M. ., Holzworth, D.,Smith, C. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4), 267–288. doi:10.1016/s1161-0301(02)00108-9.

Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3-4), 289–307. doi:10.1016/s1161-0301(02)00109-0.

Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., & Jakas, M. C. Q. (2006). Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192(3-4), 362–384. doi:10.1016/j.ecolmodel.2005.07.010.

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Sinoquet, H. (2003). An overview of the crop model stics. European Journal of Agronomy, 18(3-4), 309–332. doi:10.1016/s1161-0301(02)00110-7.

Rossi, V., Manstretta, V., & Ruggeri, M. (2015). A multicomponent decision support system to manage Fusarium head blight and mycotoxins in durum wheat. World Mycotoxin Journal, 8(5), 629–640. doi:10.3920/wmj2015.1881.

Mannini, P., Genovesi, R., & Letterio, T. (2013). IRRINET: Large Scale DSS Application for On-farm Irrigation Scheduling. Procedia Environmental Sciences, 19, 823–829. doi:10.1016/j.proenv.2013.06.091.

Ullrich, J., & Schrödter, H. (1966). Das Problem der Vorhersage des Auftretens der Kartoffelkrautfäule (Phytophthora infestans) und die Möglichkeit seiner Lösung durch eine “Negativprognose”. Nachrichtenblatt Deutsch. Pflanzenschutzdienst (Braunschweig), 18, 33-40. (in German).

Fenu, G., and Malloci, F. M. (2020): LANDS DSS: A Decision Support System for Forecasting Crop Disease in Southern Sardinia. Special Issue in the International Journal of Decision Support System Technology (IJDSST). IGI Global, Pennsylvania, United States.

Fenu, G., & Malloci, F. M. (2019). An Application of Machine Learning Technique in Forecasting Crop Disease. Proceedings of the 2019 3rd International Conference on Big Data Research. doi:10.1145/3372454.3372474.

Fenu, G., & Malloci, F. M. (2020). Artificial Intelligence Technique in Crop Disease Forecasting: A Case Study on Potato Late Blight Prediction. Smart Innovation, Systems and Technologies, 79–89. doi:10.1007/978-981-15-5925-9_7.

Fry, W. E., Apple, A. E., & Bruhn, J. A. (1983). Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering. Phytopathology, 73(7), 1054-1059.

Bruhn, J. A. (1981). Analysis of Potato Late Blight Epidemiology by Simulation Modeling. Phytopathology, 71(6), 612. doi:10.1094/phyto-71-612.


Full Text: PDF

DOI: 10.28991/HIJ-2020-01-03-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Gianni Fenu, Francesca Maridina Malloci