Hardware Engineering of Hazardous Gas and Alcoholic Substances Detector in Meat Using Microcontroller and Gas Sensor

Iswanto Suwarno, Purwono Purwono, Alfian Ma'arif

Abstract


Meat may provide not only essential nutritional content but also possible harmful effects on human bodies. Unsafe consumption of meat potentially triggers colorectal cancer risks. Grilling is the most popular way to consume meat. However, meat grilling triggers the formation of hazardous chemical substances such as poisonous Polycyclic Aromatic Hydrocarbons (PAHs). This study conducted experiments using hardware engineering with microcontrollers and different gas sensors, aiming to identify gas substances produced by meat during grilling. The hardware prototype for the test simulation tool was assembled with integrated block systems and circuits. Evaluations were conducted on the direct grilling of three different types of meat. The data results were then utilized to analyze gas substances produced by meat during direct grilling. Based on the results, only five of the seven MQ-type gas sensors used in the research reacted to gas substances produced by all types of meat: LPG, alcohol, carbon monoxide, methane, and carbon dioxide, which were successfully detected in meat during grilling. Our research contributes to discovering a potential prevalence of increased alcoholic content in meat that has been grilled for five minutes. This finding is especially crucial for Muslims since it is highly correlated with halal certification of meat consumption. According to the results, Muslims should wait at least seven minutes or more after direct grilling to let the alcoholic content in meat thoroughly decrease so that it can be safely certified as halal to be consumed according to Islamic laws.

 

Doi: 10.28991/HIJ-2023-04-03-01

Full Text: PDF


Keywords


Food Production; Compounds; Gas; Meat; Microcontroller; Sensor.

References


Tenrisanna, V., & Kasim, S. N. (2020). Trends and forecasting of meat production and consumption in Indonesia: Livestock development strategies. IOP Conference Series: Earth and Environmental Science, 492(1). doi:10.1088/1755-1315/492/1/012156.

Chang, H. S. C., Sumantri, I., Panjaitan, T., Hilmiati, N., Edriantina, R., & Prameswari, F. (2020). Beef Demand Trends in Indonesia and the Implications for Australian Live Cattle and Beef Exports. Australasian Agribusiness Review, 28(4), 71-106.

Agus, A., & Widi, T. S. M. (2018). Current situation and future prospects for beef cattle production in Indonesia - A review. Asian-Australasian Journal of Animal Sciences, 31(7), 976–983. doi:10.5713/ajas.18.0233.

Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional Composition of Meat. Meat Science and Nutrition. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.77045.

Wood, J. D. (2023). Meat composition and nutritional value. Lawrie’s Meat Science, 665–685, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-323-85408-5.00012-1.

Cabrera, M. C., & Saadoun, A. (2014). An overview of the nutritional value of beef and lamb meat from South America. Meat Science, 98(3), 435–444. doi:10.1016/j.meatsci.2014.06.033.

Qu, C., Li, Y., Du, S., Geng, Y., Su, M., & Liu, H. (2022). Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Research International, 161, 111805. doi:10.1016/j.foodres.2022.111805.

Pogorzelska-Nowicka, E., Kurek, M., Hanula, M., Wierzbicka, A., & Półtorak, A. (2022). Formation of Carcinogens in Processed Meat and Its Measurement with the Usage of Artificial Digestion—A Review. Molecules, 27(14), 4668. doi:10.3390/molecules27144665.

Thøgersen, R., & Bertram, H. C. (2021). Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract – A review of current knowledge and evidence of health prospects. Trends in Food Science and Technology, 108, 111–118. doi:10.1016/j.tifs.2020.12.015.

O'keefe, S. J. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature reviews Gastroenterology & hepatology, 13(12), 691-706. doi:10.1038/nrgastro.2016.165.

Turesky, R. J. (2018). Mechanistic evidence for red meat and processed meat intake and cancer risk: A follow-up on the international agency for research on cancer evaluation of 2015. Chimia, 72(10), 718–724. doi:10.2533/chimia.2018.718.

Parada, H., Steck, S. E., Bradshaw, P. T., Engel, L. S., Conway, K., Teitelbaum, S. L., Neugut, A. I., Santella, R. M., & Gammon, M. D. (2017). Grilled, Barbecued, and Smoked Meat Intake and Survival Following Breast Cancer. Journal of the National Cancer Institute, 109(6), 1–8. doi:10.1093/jnci/djw299.

Qian, F., Riddle, M. C., Wylie-Rosett, J., & Hu, F. B. (2020). Red and processed meats and health risks: How strong is the evidence? Diabetes Care, 43(2), 265–271. doi:10.2337/dci19-0063.

Biswas, A. K., Jairath, G., Mendiratta, S. K., Kumar, D., & Bauer, F. (2024). Residues associated with meat production and processing. Encyclopedia of Meat Sciences, 570–581, Academic Press, Cambridge, United States. doi:10.1016/b978-0-323-85125-1.00050-8.

Nader, M., Hosseininezhad, B., Berizi, E., Mazloomi, S. M., Hosseinzadeh, S., Zare, M., Derakhshan, Z., Conti, G. O., & Ferrante, M. (2022). The residual nitrate and nitrite levels in meat products in Iran: A systematic review, meta-analysis and health risk assessment. Environmental Research, 207, 112180. doi:10.1016/j.envres.2021.112180.

Haiba, N. S., Asaal, A. M., El Massry, A. M., Ismail, I., Basahi, J., & Hassan, I. A. (2021). Effects of “Doneness” Level on PAH Concentrations in Charcoal-Grilled Beef and Chicken: An Egyptian Study Case. Polycyclic Aromatic Compounds, 41(3), 553–563. doi:10.1080/10406638.2019.1602062.

Alves, C. A., Evtyugina, M., Vicente, E., Vicente, A., Gonçalves, C., Neto, A. I., Nunes, T., & Kováts, N. (2022). Outdoor charcoal grilling: Particulate and gas-phase emissions, organic speciation and ecotoxicological assessment. Atmospheric Environment, 285, 119240. doi:10.1016/j.atmosenv.2022.119240.

Manful, C. F., Vidal, N. P., Pham, T. H., Nadeem, M., Wheeler, E., Hamilton, M. C., Doody, K. M., & Thomas, R. H. (2020). Unfiltered beer based marinades reduced exposure to carcinogens and suppressed conjugated fatty acid oxidation in grilled meats. Food Control, 111, 107040. doi:10.1016/j.foodcont.2019.107040.

Moguel-Gloria, A., & Vanegas-Farfano, D. (2017). Diet and cancer: The case of red and processed meat. Médica Sur, 23(2), 68-73.

Alzeer, J., & Abou Hadeed, K. (2016). Ethanol and its Halal status in food industries. Trends in Food Science and Technology, 58, 14–20. doi:10.1016/j.tifs.2016.10.018.

Riaz, M. N., & Riaz, N. M. (2024). Requirements for Halal Food Production. Encyclopedia of Food Safety, 588–598, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-822521-9.00003-4.

Pauzi, N., Man, S., Nawawi, M. S. A. M., & Abu-Hussin, M. F. (2019). Ethanol standard in halal dietary product among Southeast Asian halal governing bodies. Trends in Food Science and Technology, 86, 375–380. doi:10.1016/j.tifs.2019.02.042.

El Bilali, H., & Allahyari, M. S. (2018). Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Information Processing in Agriculture, 5(4), 456–464. doi:10.1016/j.inpa.2018.06.006.

Ortea, I. (2022). Foodomics in health: Advanced techniques for studying the bioactive role of foods. TrAC Trends in Analytical Chemistry, 150, 116589. doi:10.1016/j.trac.2022.116589.

Abdelkader, Y., Perez-Davalos, L., LeDuc, R., Zahedi, R. P., & Labouta, H. I. (2023). Omics approaches for the assessment of biological responses to nanoparticles. Advanced Drug Delivery Reviews, 200, 114992. doi:10.1016/j.addr.2023.114992.

Arivaradarajan, P., & Misra, G. (2018). Omics Approaches, Technologies and Applications, Springer, Singapore. doi:10.1007/978-981-13-2925-8.

Ametaj, B. N. (2017). Periparturient Diseases of Dairy Cows, Springer, Cham, Switzerland. doi:10.1007/978-3-319-43033-1.

Duong, L. N. K., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., & Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends in Food Science & Technology, 106, 355–364. doi:10.1016/j.tifs.2020.10.028.

Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2022). IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, 9(9), 6305–6324. doi:10.1109/JIOT.2020.2998584.

Jin, C., Bouzembrak, Y., Zhou, J., Liang, Q., van den Bulk, L. M., Gavai, A., Liu, N., van den Heuvel, L. J., Hoenderdaal, W., & Marvin, H. J. P. (2020). Big Data in food safety- A review. Current Opinion in Food Science, 36, 24–32. doi:10.1016/j.cofs.2020.11.006.

Rejeb, A., Keogh, J. G., Zailani, S., Treiblmaier, H., & Rejeb, K. (2020). Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics, 4(4), 27. doi:10.3390/logistics4040027.

Furizal, F., Ma’arif, A., Firdaus, A. A., & Rahmaniar, W. (2023). Future Potential of E-Nose Technology: A Review. International Journal of Robotics and Control Systems, 3(3), 449–469. doi:10.31763/ijrcs.v3i3.1091.

Echegaray, N., Hassoun, A., Jagtap, S., Tetteh-Caesar, M., Kumar, M., Tomasevic, I., Goksen, G., & Lorenzo, J. M. (2022). Meat 4.0: Principles and Applications of Industry 4.0 Technologies in the Meat Industry. Applied Sciences (Switzerland), 12(14), 1–19. doi:10.3390/app12146986.

Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. doi:10.1109/ACCESS.2019.2932609.

Sumer, G., & Oz, F. (2023). The Effect of Direct and Indirect Barbecue Cooking on Polycyclic Aromatic Hydrocarbon Formation and Beef Quality. Foods, 12(7). doi:10.3390/foods12071374.

Fedorov, F. S., Yaqin, A., Krasnikov, D. V., Kondrashov, V. A., Ovchinnikov, G., Kostyukevich, Y., Osipenko, S., & Nasibulin, A. G. (2021). Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 345, 128747. doi:10.1016/j.foodchem.2020.128747.

Moran, L., Aldai, N., & Barron, L. J. R. (2021). Elucidating the combined effect of sample preparation and solid-phase microextraction conditions on the volatile composition of cooked meat analyzed by capillary gas chromatography coupled with mass spectrometry. Food Chemistry, 352, 129380. doi:10.1016/j.foodchem.2021.129380.

Kafouris, D., Koukkidou, A., Christou, E., Hadjigeorgiou, M., & Yiannopoulos, S. (2020). Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus. Meat Science, 164, 108088. doi:10.1016/j.meatsci.2020.108088.

Sarno, R., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Electronic nose dataset for pork adulteration in beef. Data in Brief, 32, 106139. doi:10.1016/j.dib.2020.106139.

Sarno, R., Triyana, K., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Detecting Pork Adulteration in Beef for Halal Authentication using an Optimized Electronic Nose System. IEEE Access. doi:10.1109/ACCESS.2020.3043394.

Oates, M. J., Gonzalez-Teruel, J. D., Ruiz-Abellon, M. C., Guillamon-Frutos, A., Ramos, J. A., & Torres-Sanchez, R. (2022). Using a Low-Cost Components e-Nose for Basic Detection of Different Foodstuffs. IEEE Sensors Journal, 22(14), 13872–13881. doi:10.1109/JSEN.2022.3181513.

Popa, A., Hnatiuc, M., Paun, M., Geman, O., Hemanth, D. J., Dorcea, D., Son, L. H., & Ghita, S. (2019). An intelligent IoT-based food quality monitoring approach using low-cost sensors. Symmetry, 11(3), 374. doi:10.3390/sym11030374.

Mansur, A. R., Oh, J., Lee, H. S., & Oh, S. Y. (2022). Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chemistry, 366, 130526. doi:10.1016/j.foodchem.2021.130526.

Tiwari, M., Sahu, S. K., Bhangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2013). Estimation of polycyclic aromatic hydrocarbons associated with size segregated combustion aerosols generated from household fuels. Microchemical Journal, 106, 79–86. doi:10.1016/j.microc.2012.05.008.

Kelly, J. M., Ivatt, P. D., Evans, M. J., Kroll, J. H., Hrdina, A. I. H., Kohale, I. N., White, F. M., Engelward, B. P., & Selin, N. E. (2021). Global Cancer Risk from Unregulated Polycyclic Aromatic Hydrocarbons. GeoHealth, 5(9), 2021 000401. doi:10.1029/2021GH000401.

Karim, F., Hijaz, F., Kastner, C. L., & Smith, J. S. (2010). Frozen Beef Contamination after Exposure to Low Levels of Ammonia Gas. Journal of Food Science, 75(2), 35– 39. doi:10.1111/j.1750-3841.2009.01488.x.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-03-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Iswanto Suwarno, Purwono Purwono, Alfian Ma'arif