Hardware Engineering of Hazardous Gas and Alcoholic Substances Detector in Meat Using Microcontroller and Gas Sensor
Abstract
Doi: 10.28991/HIJ-2023-04-03-01
Full Text: PDF
Keywords
References
Tenrisanna, V., & Kasim, S. N. (2020). Trends and forecasting of meat production and consumption in Indonesia: Livestock development strategies. IOP Conference Series: Earth and Environmental Science, 492(1). doi:10.1088/1755-1315/492/1/012156.
Chang, H. S. C., Sumantri, I., Panjaitan, T., Hilmiati, N., Edriantina, R., & Prameswari, F. (2020). Beef Demand Trends in Indonesia and the Implications for Australian Live Cattle and Beef Exports. Australasian Agribusiness Review, 28(4), 71-106.
Agus, A., & Widi, T. S. M. (2018). Current situation and future prospects for beef cattle production in Indonesia - A review. Asian-Australasian Journal of Animal Sciences, 31(7), 976–983. doi:10.5713/ajas.18.0233.
Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional Composition of Meat. Meat Science and Nutrition. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.77045.
Wood, J. D. (2023). Meat composition and nutritional value. Lawrie’s Meat Science, 665–685, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-323-85408-5.00012-1.
Cabrera, M. C., & Saadoun, A. (2014). An overview of the nutritional value of beef and lamb meat from South America. Meat Science, 98(3), 435–444. doi:10.1016/j.meatsci.2014.06.033.
Qu, C., Li, Y., Du, S., Geng, Y., Su, M., & Liu, H. (2022). Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Research International, 161, 111805. doi:10.1016/j.foodres.2022.111805.
Pogorzelska-Nowicka, E., Kurek, M., Hanula, M., Wierzbicka, A., & Półtorak, A. (2022). Formation of Carcinogens in Processed Meat and Its Measurement with the Usage of Artificial Digestion—A Review. Molecules, 27(14), 4668. doi:10.3390/molecules27144665.
Thøgersen, R., & Bertram, H. C. (2021). Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract – A review of current knowledge and evidence of health prospects. Trends in Food Science and Technology, 108, 111–118. doi:10.1016/j.tifs.2020.12.015.
O'keefe, S. J. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature reviews Gastroenterology & hepatology, 13(12), 691-706. doi:10.1038/nrgastro.2016.165.
Turesky, R. J. (2018). Mechanistic evidence for red meat and processed meat intake and cancer risk: A follow-up on the international agency for research on cancer evaluation of 2015. Chimia, 72(10), 718–724. doi:10.2533/chimia.2018.718.
Parada, H., Steck, S. E., Bradshaw, P. T., Engel, L. S., Conway, K., Teitelbaum, S. L., Neugut, A. I., Santella, R. M., & Gammon, M. D. (2017). Grilled, Barbecued, and Smoked Meat Intake and Survival Following Breast Cancer. Journal of the National Cancer Institute, 109(6), 1–8. doi:10.1093/jnci/djw299.
Qian, F., Riddle, M. C., Wylie-Rosett, J., & Hu, F. B. (2020). Red and processed meats and health risks: How strong is the evidence? Diabetes Care, 43(2), 265–271. doi:10.2337/dci19-0063.
Biswas, A. K., Jairath, G., Mendiratta, S. K., Kumar, D., & Bauer, F. (2024). Residues associated with meat production and processing. Encyclopedia of Meat Sciences, 570–581, Academic Press, Cambridge, United States. doi:10.1016/b978-0-323-85125-1.00050-8.
Nader, M., Hosseininezhad, B., Berizi, E., Mazloomi, S. M., Hosseinzadeh, S., Zare, M., Derakhshan, Z., Conti, G. O., & Ferrante, M. (2022). The residual nitrate and nitrite levels in meat products in Iran: A systematic review, meta-analysis and health risk assessment. Environmental Research, 207, 112180. doi:10.1016/j.envres.2021.112180.
Haiba, N. S., Asaal, A. M., El Massry, A. M., Ismail, I., Basahi, J., & Hassan, I. A. (2021). Effects of “Doneness” Level on PAH Concentrations in Charcoal-Grilled Beef and Chicken: An Egyptian Study Case. Polycyclic Aromatic Compounds, 41(3), 553–563. doi:10.1080/10406638.2019.1602062.
Alves, C. A., Evtyugina, M., Vicente, E., Vicente, A., Gonçalves, C., Neto, A. I., Nunes, T., & Kováts, N. (2022). Outdoor charcoal grilling: Particulate and gas-phase emissions, organic speciation and ecotoxicological assessment. Atmospheric Environment, 285, 119240. doi:10.1016/j.atmosenv.2022.119240.
Manful, C. F., Vidal, N. P., Pham, T. H., Nadeem, M., Wheeler, E., Hamilton, M. C., Doody, K. M., & Thomas, R. H. (2020). Unfiltered beer based marinades reduced exposure to carcinogens and suppressed conjugated fatty acid oxidation in grilled meats. Food Control, 111, 107040. doi:10.1016/j.foodcont.2019.107040.
Moguel-Gloria, A., & Vanegas-Farfano, D. (2017). Diet and cancer: The case of red and processed meat. Médica Sur, 23(2), 68-73.
Alzeer, J., & Abou Hadeed, K. (2016). Ethanol and its Halal status in food industries. Trends in Food Science and Technology, 58, 14–20. doi:10.1016/j.tifs.2016.10.018.
Riaz, M. N., & Riaz, N. M. (2024). Requirements for Halal Food Production. Encyclopedia of Food Safety, 588–598, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-822521-9.00003-4.
Pauzi, N., Man, S., Nawawi, M. S. A. M., & Abu-Hussin, M. F. (2019). Ethanol standard in halal dietary product among Southeast Asian halal governing bodies. Trends in Food Science and Technology, 86, 375–380. doi:10.1016/j.tifs.2019.02.042.
El Bilali, H., & Allahyari, M. S. (2018). Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Information Processing in Agriculture, 5(4), 456–464. doi:10.1016/j.inpa.2018.06.006.
Ortea, I. (2022). Foodomics in health: Advanced techniques for studying the bioactive role of foods. TrAC Trends in Analytical Chemistry, 150, 116589. doi:10.1016/j.trac.2022.116589.
Abdelkader, Y., Perez-Davalos, L., LeDuc, R., Zahedi, R. P., & Labouta, H. I. (2023). Omics approaches for the assessment of biological responses to nanoparticles. Advanced Drug Delivery Reviews, 200, 114992. doi:10.1016/j.addr.2023.114992.
Arivaradarajan, P., & Misra, G. (2018). Omics Approaches, Technologies and Applications, Springer, Singapore. doi:10.1007/978-981-13-2925-8.
Ametaj, B. N. (2017). Periparturient Diseases of Dairy Cows, Springer, Cham, Switzerland. doi:10.1007/978-3-319-43033-1.
Duong, L. N. K., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., & Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends in Food Science & Technology, 106, 355–364. doi:10.1016/j.tifs.2020.10.028.
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2022). IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, 9(9), 6305–6324. doi:10.1109/JIOT.2020.2998584.
Jin, C., Bouzembrak, Y., Zhou, J., Liang, Q., van den Bulk, L. M., Gavai, A., Liu, N., van den Heuvel, L. J., Hoenderdaal, W., & Marvin, H. J. P. (2020). Big Data in food safety- A review. Current Opinion in Food Science, 36, 24–32. doi:10.1016/j.cofs.2020.11.006.
Rejeb, A., Keogh, J. G., Zailani, S., Treiblmaier, H., & Rejeb, K. (2020). Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics, 4(4), 27. doi:10.3390/logistics4040027.
Furizal, F., Ma’arif, A., Firdaus, A. A., & Rahmaniar, W. (2023). Future Potential of E-Nose Technology: A Review. International Journal of Robotics and Control Systems, 3(3), 449–469. doi:10.31763/ijrcs.v3i3.1091.
Echegaray, N., Hassoun, A., Jagtap, S., Tetteh-Caesar, M., Kumar, M., Tomasevic, I., Goksen, G., & Lorenzo, J. M. (2022). Meat 4.0: Principles and Applications of Industry 4.0 Technologies in the Meat Industry. Applied Sciences (Switzerland), 12(14), 1–19. doi:10.3390/app12146986.
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. doi:10.1109/ACCESS.2019.2932609.
Sumer, G., & Oz, F. (2023). The Effect of Direct and Indirect Barbecue Cooking on Polycyclic Aromatic Hydrocarbon Formation and Beef Quality. Foods, 12(7). doi:10.3390/foods12071374.
Fedorov, F. S., Yaqin, A., Krasnikov, D. V., Kondrashov, V. A., Ovchinnikov, G., Kostyukevich, Y., Osipenko, S., & Nasibulin, A. G. (2021). Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 345, 128747. doi:10.1016/j.foodchem.2020.128747.
Moran, L., Aldai, N., & Barron, L. J. R. (2021). Elucidating the combined effect of sample preparation and solid-phase microextraction conditions on the volatile composition of cooked meat analyzed by capillary gas chromatography coupled with mass spectrometry. Food Chemistry, 352, 129380. doi:10.1016/j.foodchem.2021.129380.
Kafouris, D., Koukkidou, A., Christou, E., Hadjigeorgiou, M., & Yiannopoulos, S. (2020). Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus. Meat Science, 164, 108088. doi:10.1016/j.meatsci.2020.108088.
Sarno, R., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Electronic nose dataset for pork adulteration in beef. Data in Brief, 32, 106139. doi:10.1016/j.dib.2020.106139.
Sarno, R., Triyana, K., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Detecting Pork Adulteration in Beef for Halal Authentication using an Optimized Electronic Nose System. IEEE Access. doi:10.1109/ACCESS.2020.3043394.
Oates, M. J., Gonzalez-Teruel, J. D., Ruiz-Abellon, M. C., Guillamon-Frutos, A., Ramos, J. A., & Torres-Sanchez, R. (2022). Using a Low-Cost Components e-Nose for Basic Detection of Different Foodstuffs. IEEE Sensors Journal, 22(14), 13872–13881. doi:10.1109/JSEN.2022.3181513.
Popa, A., Hnatiuc, M., Paun, M., Geman, O., Hemanth, D. J., Dorcea, D., Son, L. H., & Ghita, S. (2019). An intelligent IoT-based food quality monitoring approach using low-cost sensors. Symmetry, 11(3), 374. doi:10.3390/sym11030374.
Mansur, A. R., Oh, J., Lee, H. S., & Oh, S. Y. (2022). Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chemistry, 366, 130526. doi:10.1016/j.foodchem.2021.130526.
Tiwari, M., Sahu, S. K., Bhangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2013). Estimation of polycyclic aromatic hydrocarbons associated with size segregated combustion aerosols generated from household fuels. Microchemical Journal, 106, 79–86. doi:10.1016/j.microc.2012.05.008.
Kelly, J. M., Ivatt, P. D., Evans, M. J., Kroll, J. H., Hrdina, A. I. H., Kohale, I. N., White, F. M., Engelward, B. P., & Selin, N. E. (2021). Global Cancer Risk from Unregulated Polycyclic Aromatic Hydrocarbons. GeoHealth, 5(9), 2021 000401. doi:10.1029/2021GH000401.
Karim, F., Hijaz, F., Kastner, C. L., & Smith, J. S. (2010). Frozen Beef Contamination after Exposure to Low Levels of Ammonia Gas. Journal of Food Science, 75(2), 35– 39. doi:10.1111/j.1750-3841.2009.01488.x.
DOI: 10.28991/HIJ-2023-04-03-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Iswanto Suwarno, Purwono Purwono, Alfian Ma'arif