Production and King Grass Nutritional Quality Number of Sources of Nitrogen Fertilizer

Eko Hendarto, Agustinah Setyaningrum


The aim of this study was to obtain the best nitrogen source and level of information on plant growth, production, and nutritional quality of king grass forage (Pennisetum Purpureophoides). The source of nitrogen comes from natural fertilizers (chicken and cow manure) and artificial fertilizers (urea and NPK). The method was completely randomized with the BNJ further test with a confidence interval of <0.05. The research plan consisted of 2 factors: the type of fertilizer (organic; cow and chicken manure); inorganic fertilizers (NPK and urea + nitrogen); and the second factor, the dosage (50, 75, and 100 kg/ha/defoliation). Observation parameters were plant height, stem diameter, number of plants per clump, fresh forage production, dry matter production, dry matter content, crude protein content, crude fibre content, and crude fat content. The results of the study using modifications in fertilizing king grass to increase carbon sources and nutrients obtained significant results. The average plant height was obtained between 60-263 cm. The largest size was at defoliation 1, and the lowest was at defoliation 4. Plant diameter increased between 9.97–12.43 mm, with tiller production in plants increasing to 18.5–25.8 planting. The increase was also followed by the number of fresh leaves and a decrease in the number of dry leaves. Protein content increased with the higher dose given at 11.78% BK, with a crude fiber value of 34.41% BK. King Grass contains a good source of carbon nutrients and can affect the increase in plant growth with a higher plant height and a higher number of leaves.


Doi: 10.28991/HIJ-2022-03-03-02

Full Text: PDF


King Grass; Nitrogen Source; Cow Dung; Urea; Growth and Nutritional Quality; Nitrogen Level.


Zapata, F., & Zaharah, A. R. (2002). Phosphorus availability from phosphate rock and sewage sludge as influenced by the addition of water soluble phosphate fertilizer. Nutrient Cycling in Agroecosystems, 63(1), 43–48. doi:10.1023/A:1020518830129.

Dominati, E. J., Maseyk, F. J. F., Mackay, A. D., & Rendel, J. M. (2019). Farming in a changing environment: Increasing biodiversity on farm for the supply of multiple ecosystem services. Science of the Total Environment, 662, 703–713. doi:10.1016/j.scitotenv.2019.01.268.

Karbivska, U., Kurgak, V., Gamayunova, V., Butenko, A., Malynka, L., Kovalenko, I., … Pshychenko, O. (2020). Productivity and Quality of Diverse Ripe Pasture Grass Fodder Depends on the Method of Soil Cultivation. Acta Agrobotanica, 73(3). doi:10.5586/aa.7334.

Shah, A. A., Xianjun, Y., Zhihao, D., Junfeng, L., & Shao, T. (2018). Isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum. World Journal of Microbiology and Biotechnology, 34(1). doi:10.1007/s11274-017-2387-2.

Infitria, I., & Khalil, K. (2014). Study of forage production and quality in the grasslands of UPT Animal Husbandry, Andalas University, Padang. Buletin Ilmu Makanan Ternak, 12(1), 25-33. (In Indonesian).

Hu, L., Wang, R., Liu, X., Xu, B., Xie, T., Li, Y., Wang, M., Wang, G., & Chen, Y. (2018). Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Environmental Science and Pollution Research, 25(22), 21671–21681. doi:10.1007/s11356-018-2311-9.

Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A., Gruda, N. S., & Tzortzakis, N. (2020). Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy, 10(1). doi:10.3390/agronomy10010010.

Suarna, I. W., Budiasa, I. K. M., Putri, T. I., Mariani, N. P., & Hartawan, M. (2019). Potensi Bio-Slurry Dalam Peningkatan Karakteristik Tumbuh Dan Produksi Pastura Campuran Pada Lahan Kering Di Desa Sebudi Karangasem. Pastura, 6(2), 70. doi:10.24843/pastura.2017.v06.i02.p06.

Al-Maliki, S., AL-Mammory, H., & Scullion, J. (2018). Interactions between humic substances and organic amendments affecting soil biological properties and growth of Zea mays L. in the arid land region. Arid Land Research and Management, 32(4), 455–470. doi:10.1080/15324982.2018.1495670.

Widaryanto, E., & NIK, Y. F. (2019). Growth and Yield of Watercress (Nasturtium officinale R. Br) at The Level and Different Type of Nitrogen Fertilizer. PLANTROPICA: Journal of Agricultural Science, 1(1), 35-41.

Ha, N. M. C., Nguyen, T. H., Wang, S. L., & Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates, 45(1), 51–63. doi:10.1007/s11164-018-3630-7.

Permana, A. T., Abdullah, L., Karti, P. D. M., Toharmat, T., & Suwarno, S. (2017). Efektivitas Vermikompos Eisenia Foetida Savigny Dalam Memperbaiki Tingkat Produksi Dan Kualitas Nutrisi Sorghum bicolor (L.) Moench DAN Centrosema pubescens Benth. Pastura, 5(1), 7. doi:10.24843/pastura.2015.v05.i01.p08.

Dubeux, J. C. B., & Sollenberger, L. E. (2020). Nutrient cycling in grazed pastures. Management Strategies for Sustainable Cattle Production in Southern Pastures, 59–75, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/b978-0-12-814474-9.00004-9.

Rachman, L. M. (2020). Using Soil Quality Index Plus to assess soil conditions and limiting factors for dryland farming. SAINS TANAH - Journal of Soil Science and Agroclimatology, 17(2), 100. doi:10.20961/stjssa.v17i2.46889.

Ågren, G. I., Wetterstedt, J. Å. M., & Billberger, M. F. K. (2012). Nutrient limitation on terrestrial plant growth - modeling the interaction between nitrogen and phosphorus. New Phytologist, 194(4), 953–960. doi:10.1111/j.1469-8137.2012.04116.x.

Ehsanullah, Jabran, K., Asghar, G., Hussain, M., & Rafiq, M. (2012). Effect of nitrogen fertilization and seedling density on fine rice yield in Faisalabad, Pakistan. Soil and Environment, 31(2), 152–156.

Ali, A., & Noorka, I. R. (2013). Nitrogen and phosphorus management strategy for better growth and yield of sunflower (Helianthus annuus L.) hybrid. Soil and Environment, 32(1), 44–48.

Burnett, S. E., Mattson, N. S., & Williams, K. A. (2016). Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae, 208, 111–119. doi:10.1016/j.scienta.2016.01.001.

Ferreira, J. F. S., Cornacchione, M. V., Liu, X., & Suarez, D. L. (2015). Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa (Medicago sativa, L.) in Response to Saline Irrigation Water. Agriculture (Switzerland), 5(3), 577–597. doi:10.3390/agriculture5030577.

Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M., & Murtaza, G. (2020). Bio-fertilizers: Eco-Friendly Approach for Plant and Soil Environment. Bioremediation and Biotechnology. Springer, Cham, Switzerland.

Botero-Londoño, J. M., Celis-Celis, E. M., & Botero-Londoño, M. A. (2021). Nutritional quality, nutrient uptake and biomass production of Pennisetum purpureum cv. King grass. Scientific Reports, 11(1), 1–8. doi:10.1038/s41598-021-93301-w.

Hendarto, E., Qohar, A. F., Hidayat, N., Bahrun, B., & Harwanto, H. (2020). Production and Capacity of Odot Grass (Pennisetum purpureum cv. Mott) In Various Combinations of Manure and NPK. Prosiding seminar Nasional Teknologi Agribisnis Peternakan (STAP), 7, 751-75. (In Indonesian).

Grossnickle, S. C. (2012). Why seedlings survive: Influence of plant attributes. New Forests, 43(5–6), 711–738. doi:10.1007/s11056-012-9336-6.

Qohar, A. F., Hendarto, E., Munasik, H., & Nur Hidayat, B. (2021). Dynamics Effect of Compost Fertilizer Dose and Enrichment of Azolla on the Growth of King Grass. Annals of the Romanian Society for Cell Biology, 20296-20303.

Fageria, N. K. (2016). The use of nutrients in crop plants. CRC Press, Boca Raton, United States. doi:10.1201/9781420075113.

De Vries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., … Bardgett, R. D. (2012). Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 15(11), 1230–1239. doi:10.1111/j.1461-0248.2012.01844.x.

Razaq, M., Zhang, P., Shen, H. L., & Salahuddin. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE, 12(2). doi:10.1371/journal.pone.0171321.

Bloom, A. J., Frensch, J., & Taylor, A. R. (2005). Influence of Inorganic Nitrogen and pH on the Elongation of Maize Seminal Roots. Annals of Botany, 97(5), 867–873. doi:10.1093/aob/mcj605.

Chen, Y., Fan, P., Mo, Z., Kong, L., Tian, H., Duan, M., … Pan, S. (2020). Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. Journal of Plant Growth Regulation, 40(1), 379–387. doi:10.1007/s00344-020-10107-2.

Gordeyase, I. K. M., Hartanto, R., & Pratiwi, W. D. (2006). Projection of carrying capacity of food crop waste feed for ruminants in Central Java. Journal of the Indonesian Tropical Animal Agriculture, 32(4), 285-292. (In Indonesian).

Aminudin, S., & Hendarto, E. (2000). Feed Plant Science. Textbooks. Faculty of Animal Husbandry, Unsoed Purwokerto. (In Indonesian).

Sharma, N., Bohra, B., Pragya, N., Ciannella, R., Dobie, P., & Lehmann, S. (2016). Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development. Food and Energy Security, 5(3), 165–183. doi:10.1002/fes3.87.

Hendarto, E., Suwarno, S., & Sudiarto, P. (2018). The effect of combination of daily cow dung and urea fertilization on growth and production of mulato grass. Prosiding Seminar Nasional Teknologi Agribisnis Peternakan (STAP), 5, 166. (In Indonesian).

Liu, X., Ren, G., & Shi, Y. (2011). The effect of organic manure and chemical fertilizer on growth and development of Stevia rebaudiana Bertoni. Energy Procedia, 5, 1200–1204. doi:10.1016/j.egypro.2011.03.210.

Abdullah, L., Budhie, D., & Lubis, A. (2011). Effect of application of goat urine and commercial organic liquid fertilizer on some agronomic parameters on feed plants Indigofera sp. Pastura, 1(1), 5-8. doi:10.24843/Pastura.2011.v01.i01.p02. (In Indonesian).

Zeffa, D. M., Perini, L. J., Silva, M. B., de Sousa, N. V., Scapim, C. A., Oliveira, A. L. M. de, … Azeredo Gonçalves, L. S. (2019). Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLOS ONE, 14(4), e0215332. doi:10.1371/journal.pone.0215332.

Koten, B. B. (2013). Intercropping Legum Arbila (Phaseolus lunatyus L.) Rizobium Berinokulum with Sorghum (Sorghum bicolor (L) Moench in an Effort to Increase Forage Productivity for Ruminants. PhD Thesis, Gadjah Mada University, Sleman Regency, Indonesia. (In Indonesian). Available online: (accesed on February).

Khan, A., Tan, D. K. Y., Afridi, M. Z., Luo, H., Tung, S. A., Ajab, M., & Fahad, S. (2017). Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environmental Science and Pollution Research, 24(17), 14551–14566. doi:10.1007/s11356-017-8920-x.

McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34(1), 1–54. doi:10.1071/SR9960001.

Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K., ... & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219.

Okwori, A. I., & Magani, I. E. (2010). Effect of nitrogen sources and harvesting on four (4) grass species in southern guinea savanna of Nigeria. Research Journal of Animal and Veterinary Sciences, 5, 23-30.

Sajimin, N. D., & Purwantari, R. M. (2011). Effect of Type and Level of Organic Fertilizer Application on Productivity of Alfalfa (Medicago sativa L.) Plants in Bogor, West Java. The National Seminar on Animal Husbandry and Veterinary Technology, Bogor Animal Research Institute, Bogor, Indonesia. (In Indonesian).

Mansyur, Abdullah, L., Djuned, H., Tarmidi, A. R., & Dhalika, T. (2006). Pengaruh Interval Pemotongan Rumput Brachiaria humidicola (Rendle) Schweick terhadap Konsentrasi Amonia dan Asam Lemak Terbang (In Vitro). Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 11(1), 50. doi:10.25077/jpi.11.1.50-56.2006.

Purbajanti, E. D., Anwar, S., Widyati, S., & Kusmiyati, F. (2011). Crude protein and crude of fiber Benggala (Panicum Maximum) and Elephant (Pennisetum Purpureum) grasses on drought stress condition. Animal Production, 11(2).

Araújo, J. A. S., Almeida, J. C. C., Reis, R. A., Carvalho, C. A. B., & Barbero, R. P. (2020). Harvest period and baking industry residue inclusion on production efficiency and chemical composition of tropical grass silage. Journal of Cleaner Production, 266. doi:10.1016/j.jclepro.2020.121953.

Liman, L., Wijaya, A. K., Tantalo, S., Muhtarudin, Septianingrum, Indriyanti, W. P., & Adhianto, K. (2018). Effect type and levels of manure on forage production and nutrient quality of sorghum (Sorghum Bicolor (L.) Moench) plant. Asian Journal of Crop Science, 10(3), 115–120. doi:10.3923/ajcs.2018.115.120.

Nurdiawati, A., Nakhshiniev, B., Zaini, I. N., Saidov, N., Takahashi, F., & Yoshikawa, K. (2018). Characterization of potential liquid fertilizers obtained by hydrothermal treatment of chicken feathers. Environmental Progress and Sustainable Energy, 37(1), 375–382. doi:10.1002/ep.12688.

Roell, M. S., & Zurbriggen, M. D. (2020). The impact of synthetic biology for future agriculture and nutrition. Current Opinion in Biotechnology, 61, 102–109. doi:10.1016/j.copbio.2019.10.004.

Shah, F., & Wu, W. (2019). Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability, 11(5), 1485. doi:10.3390/su11051485.

Full Text: PDF

DOI: 10.28991/HIJ-2022-03-03-02


  • There are currently no refbacks.

Copyright (c) 2022 Eko Hendarto, Agustinah Setyaningrum