Static Elastic Bending Analysis of a Three-Dimensional Clamped Thick Rectangular Plate using Energy Method

F. C. Onyeka, T. E. Okeke, B. O. Mama


Analytical formulations and solutions for the thick rectangular plate static analysis with clamped support based on a three-dimensional (3-D) elasticity theory is developed using the energy method. The theoretical model, whose formulation is based on the static elastic principle as already reported in the literature, is presented herein to obviate the shear correction coefficients while considering shear deformation effect and transverse normal strain/stress in the analysis. The equilibrium equations are obtained using 3-D kinematic and constitutive relations. The deflection and rotation functions, which are the solutions of the equilibrium equation, are obtained in closed form using a general variational technique for solving the boundary value problem. The minimization energy equation yields the general equation which was used to obtain the theoretical model for the deflection and stresses of the plate. The results are compared with the available literature and the results-computed trigonometric displacement function shows that this 3-D predicts the vertical displacement and the stresses more accurately than previous studies considered in this paper. The result showed that the percentage difference between the present work and those of 2-D Mindlin FSDT, 2-D numeric analysis, and 2-D HSDT of polynomial shape functions was about 3.02%, 0.62%, and 0.33%, respectively. It is concluded that the 3-D trigonometric model gives an exact solution, unlike other 2-D theories, and can be used for clamped-supported thick plate analysis.


Doi: 10.28991/HIJ-2022-03-03-03

Full Text: PDF


Exact Static Theory; Equilibrium Equation; Bending of 3-D Clamped Plate; Trigonometric Model.


Chandrashekhara, K. (2001). Theory of plates. University Press, Hyderabad, India.

Onyeka, F. C., Okafor, F. O., & Onah, H. N. (2019). Application of exact solution approach in the analysis of thick rectangular plate. International Journal of Applied Engineering Research, 14(8), 2043-2057.

Mahi, A., Adda Bedia, E. A., & Tounsi, A. (2015). A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, 39(9), 2489–2508. doi:10.1016/j.apm.2014.10.045.

Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells (2nd Ed.). McGraw-hill, New York City, United States.

Chukwudi, O. F., Edozie, O. T., & Chidobere, N.-D. (2022). Buckling Analysis of a Three-Dimensional Rectangular Plates Material Based on Exact Trigonometric Plate Theory. Journal of Engineering Research and Sciences, 1(3), 106–115. doi:10.55708/js0103011.

Onyeka, F. C., Mama, B. O., & Okeke, T. E. (2022). Exact Three-Dimensional Stability Analysis of Plate Using a Direct Variational Energy Method. Civil Engineering Journal (Iran), 8(1), 60–80. doi:10.28991/CEJ-2022-08-01-05.

Onyeka, F. C., & Mama, B. O. (2021). Analytical study of bending characteristics of an elastic rectangular plate using direct variational energy approach with trigonometric function. Emerging Science Journal, 5(6), 916–928. doi:10.28991/esj-2021-01320.

Reddy, J. N. (2006). Theory and analysis of elastic plates and shells (2nd Ed.). CRC Press, Boca Raton, United States. doi:10.1201/9780849384165.

Ghugal, Y. M., & Gajbhiye, P. D. (2016). Bending analysis of thick isotropic plates by using 5th order shear deformation theory. Journal of Applied and Computational Mechanics, 2(2), 80–95. doi:10.22055/jacm.2016.12366.

Shimpi, R. P., & Patel, H. G. (2006). A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22–23), 6783–6799. doi:10.1016/j.ijsolstr.2006.02.007.

Gujar, P. S., & Ladhane, K. B. (2015). Bending analysis of simply supported and clamped circular plate. International Journal of Civil Engineering, 2(5), 45-51. doi:10.14445/23488352/ijce-v2i5p112.

Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using Mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.

Szilard, R. (2004). Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172872.

Kwak, S., Kim, K., Jon, S., Yun, J., & Pak, C. (2022). Free vibration analysis of laminated rectangular plates with varying thickness using Legendre-radial point interpolation method. Computers & Mathematics with Applications, 117, 187-205. doi:10.1016/j.camwa.2022.04.020.

Song, Y., Xue, K., & Li, Q. (2022). A solution method for free vibration of intact and cracked polygonal thin plates using the Ritz method and Jacobi polynomials. Journal of Sound and Vibration, 519, 116578. doi:10.1016/j.jsv.2021.116578.

Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using Mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.

Ibearugbulem, O. M. (2013). Pure bending analysis of thin rectangular SSSS plate Using Taylor-Mclaurin series. International Journal of Civil and Structural Engineering, 3(4), 685–691. doi:10.6088/ijcser.201203013062.

Reissner, E. (1945). The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), A69–A77. doi:10.1115/1.4009435.

Hashemi, S. H., & Arsanjani, M. (2005). Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. International Journal of Solids and Structures, 42(3–4), 819–853. doi:10.1016/j.ijsolstr.2004.06.063.

Reissner, E. (1981). A note on bending of plates including the effects of transverse shearing and normal strains. ZAMP Zeitschrift Für Angewandte Mathematik Und Physik, 32(6), 764–767. doi:10.1007/BF00946987.

Reddy, J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, 20(9–10), 881–896. doi:10.1016/0020-7683(84)90056-8.

Obst, M., Wasilewicz, P., & Adamiec, J. (2022). Experimental investigation of four-point bending of thin walled open section steel beam loaded and set in the shear center. Scientific Reports, 12(1), 1-17. doi:10.1038/s41598-022-10035-z.

Sayyad, A. S., & Ghugal, Y. M. (2012). Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory. Applied and Computational Mechanics, 6(1), 65-82.

Onyechere, Ignatius Chigozie, Ibearugbulem, O. M., Collins Anya, U., Okechukwu Njoku, K., Igbojiaku, A. U., & Gwarah, L. S. (2020). The Use of Polynomial Deflection Function in The Analysis of Thick Plates using Higher Order Shear Deformation Theory. Saudi Journal of Civil Engineering, 4(4), 38–46. doi:10.36348/sjce.2020.v04i04.001.

Selvaraj, R., Maneengam, A., & Sathiyamoorthy, M. (2022). Characterization of mechanical and dynamic properties of natural fiber reinforced laminated composite multiple-core sandwich plates. Composite Structures, 284, 115141. doi:10.1016/j.compstruct.2021.115141.

Nwoji, C. U., Onah, H. N., Mama, B. O., & Ike, C. C. (2018). Ritz variational method for bending of rectangular Kirchhoff plate under transverse hydrostatic load distribution. Mathematical Modelling of Engineering Problems, 5(1), 1–10. doi:10.18280/mmep.050101.

Ike, C. C. (2017). Kantorovich-Euler Lagrange-Galerkin’s method for bending analysis of thin plates. Nigerian Journal of Technology, 36(2), 351. doi:10.4314/njt.v36i2.5.

Ibearugbulem, O. M., Ezeh, J. C., Ettu, L. O., & Gwarah, L. S. (2018). Bending analysis of rectangular thick plate using polynomial shear deformation theory. IOSR Journal of Engineering (IOSRJEN), 8(9), 53-61.

Festus, O., & Okeke, E. T. (2021). Analytical Solution of Thick Rectangular Plate with Clamped and Free Support Boundary Condition using Polynomial Shear Deformation Theory. Advances in Science, Technology and Engineering Systems Journal, 6(1), 1427–1439. doi:10.25046/aj0601162.

Festus, O., Okeke, E. T., & John, W. (2020). Strain–Displacement expressions and their effect on the deflection and strength of plate. Advances in Science, Technology and Engineering Systems, 5(5), 401–413. doi:10.25046/AJ050551.

Grigorenko, A. Y., Bergulev, A. S., & Yaremchenko, S. N. (2013). Numerical Solution of Bending Problems for Rectangular Plates. International Applied Mechanics, 49(1), 81–94. doi:10.1007/s10778-013-0554-1.

Onyeka, F. C. & Ibearugbulem, O. M. (2020). Load Analysis and Bending Solutions of Rectangular Thick Plate. International Journal on Emerging Technologies, 11(3): 1103–1110.

Fu, G., Tuo, Y., Sun, B., Shi, C., & Su, J. (2022). Bending of variable thickness rectangular thin plates resting on a double-parameter foundation: integral transform solution. Engineering Computations, 39(7), 2689-2704. doi:10.1108/EC-11-2021-0692.

Ibearugbulem, O. M., & Onyeka, F. C. (2020). Moment and Stress Analysis Solutions of Clamped Rectangular Thick Plate. European Journal of Engineering Research and Science, 5(4), 531–534. doi:10.24018/ejers.2020.5.4.1898.

Li, R., Ni, X., & Cheng, G. (2015). Symplectic Superposition Method for Benchmark Flexure Solutions for Rectangular Thick Plates. Journal of Engineering Mechanics, 141(2), 1–17. doi:10.1061/(asce)em.1943-7889.0000840.

Liu, F. L., & Liew, K. M. (1998). Differential cubature method for static solutions of arbitrarily shaped thick plates. International Journal of Solids and Structures, 35(28–29), 3655–3674. doi:10.1016/S0020-7683(97)00215-1.

Lok, T. S., & Cheng, Q. H. (2001). Bending and forced vibration response of a clamped orthotropic thick plate and sandwich panel. Journal of Sound and Vibration, 245(1), 63–78. doi:10.1006/jsvi.2000.3543.

Shen, P., & He, P. (1995). Bending analysis of rectangular moderately thick plates using spline finite element method. Computers & Structures, 54(6), 1023-1029. doi:10.1016/0045-7949(94)00401-N.

Zhong, Y., & Xu, Q. (2017). Analysis Bending Solutions of Clamped Rectangular Thick Plate. Mathematical Problems in Engineering, 2017, 1–6. doi:10.1155/2017/7539276.

Full Text: PDF

DOI: 10.28991/HIJ-2022-03-03-03


  • There are currently no refbacks.

Copyright (c) 2022 Festus Chukwudi Onyeka