Static Elastic Bending Analysis of a Three-Dimensional Clamped Thick Rectangular Plate using Energy Method
Abstract
Doi: 10.28991/HIJ-2022-03-03-03
Full Text: PDF
Keywords
References
Chandrashekhara, K. (2001). Theory of plates. University Press, Hyderabad, India.
Onyeka, F. C., Okafor, F. O., & Onah, H. N. (2019). Application of exact solution approach in the analysis of thick rectangular plate. International Journal of Applied Engineering Research, 14(8), 2043-2057.
Mahi, A., Adda Bedia, E. A., & Tounsi, A. (2015). A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, 39(9), 2489–2508. doi:10.1016/j.apm.2014.10.045.
Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells (2nd Ed.). McGraw-hill, New York City, United States.
Chukwudi, O. F., Edozie, O. T., & Chidobere, N.-D. (2022). Buckling Analysis of a Three-Dimensional Rectangular Plates Material Based on Exact Trigonometric Plate Theory. Journal of Engineering Research and Sciences, 1(3), 106–115. doi:10.55708/js0103011.
Onyeka, F. C., Mama, B. O., & Okeke, T. E. (2022). Exact Three-Dimensional Stability Analysis of Plate Using a Direct Variational Energy Method. Civil Engineering Journal (Iran), 8(1), 60–80. doi:10.28991/CEJ-2022-08-01-05.
Onyeka, F. C., & Mama, B. O. (2021). Analytical study of bending characteristics of an elastic rectangular plate using direct variational energy approach with trigonometric function. Emerging Science Journal, 5(6), 916–928. doi:10.28991/esj-2021-01320.
Reddy, J. N. (2006). Theory and analysis of elastic plates and shells (2nd Ed.). CRC Press, Boca Raton, United States. doi:10.1201/9780849384165.
Ghugal, Y. M., & Gajbhiye, P. D. (2016). Bending analysis of thick isotropic plates by using 5th order shear deformation theory. Journal of Applied and Computational Mechanics, 2(2), 80–95. doi:10.22055/jacm.2016.12366.
Shimpi, R. P., & Patel, H. G. (2006). A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22–23), 6783–6799. doi:10.1016/j.ijsolstr.2006.02.007.
Gujar, P. S., & Ladhane, K. B. (2015). Bending analysis of simply supported and clamped circular plate. International Journal of Civil Engineering, 2(5), 45-51. doi:10.14445/23488352/ijce-v2i5p112.
Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using Mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.
Szilard, R. (2004). Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172872.
Kwak, S., Kim, K., Jon, S., Yun, J., & Pak, C. (2022). Free vibration analysis of laminated rectangular plates with varying thickness using Legendre-radial point interpolation method. Computers & Mathematics with Applications, 117, 187-205. doi:10.1016/j.camwa.2022.04.020.
Song, Y., Xue, K., & Li, Q. (2022). A solution method for free vibration of intact and cracked polygonal thin plates using the Ritz method and Jacobi polynomials. Journal of Sound and Vibration, 519, 116578. doi:10.1016/j.jsv.2021.116578.
Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using Mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.
Ibearugbulem, O. M. (2013). Pure bending analysis of thin rectangular SSSS plate Using Taylor-Mclaurin series. International Journal of Civil and Structural Engineering, 3(4), 685–691. doi:10.6088/ijcser.201203013062.
Reissner, E. (1945). The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), A69–A77. doi:10.1115/1.4009435.
Hashemi, S. H., & Arsanjani, M. (2005). Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. International Journal of Solids and Structures, 42(3–4), 819–853. doi:10.1016/j.ijsolstr.2004.06.063.
Reissner, E. (1981). A note on bending of plates including the effects of transverse shearing and normal strains. ZAMP Zeitschrift Für Angewandte Mathematik Und Physik, 32(6), 764–767. doi:10.1007/BF00946987.
Reddy, J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, 20(9–10), 881–896. doi:10.1016/0020-7683(84)90056-8.
Obst, M., Wasilewicz, P., & Adamiec, J. (2022). Experimental investigation of four-point bending of thin walled open section steel beam loaded and set in the shear center. Scientific Reports, 12(1), 1-17. doi:10.1038/s41598-022-10035-z.
Sayyad, A. S., & Ghugal, Y. M. (2012). Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory. Applied and Computational Mechanics, 6(1), 65-82.
Onyechere, Ignatius Chigozie, Ibearugbulem, O. M., Collins Anya, U., Okechukwu Njoku, K., Igbojiaku, A. U., & Gwarah, L. S. (2020). The Use of Polynomial Deflection Function in The Analysis of Thick Plates using Higher Order Shear Deformation Theory. Saudi Journal of Civil Engineering, 4(4), 38–46. doi:10.36348/sjce.2020.v04i04.001.
Selvaraj, R., Maneengam, A., & Sathiyamoorthy, M. (2022). Characterization of mechanical and dynamic properties of natural fiber reinforced laminated composite multiple-core sandwich plates. Composite Structures, 284, 115141. doi:10.1016/j.compstruct.2021.115141.
Nwoji, C. U., Onah, H. N., Mama, B. O., & Ike, C. C. (2018). Ritz variational method for bending of rectangular Kirchhoff plate under transverse hydrostatic load distribution. Mathematical Modelling of Engineering Problems, 5(1), 1–10. doi:10.18280/mmep.050101.
Ike, C. C. (2017). Kantorovich-Euler Lagrange-Galerkin’s method for bending analysis of thin plates. Nigerian Journal of Technology, 36(2), 351. doi:10.4314/njt.v36i2.5.
Ibearugbulem, O. M., Ezeh, J. C., Ettu, L. O., & Gwarah, L. S. (2018). Bending analysis of rectangular thick plate using polynomial shear deformation theory. IOSR Journal of Engineering (IOSRJEN), 8(9), 53-61.
Festus, O., & Okeke, E. T. (2021). Analytical Solution of Thick Rectangular Plate with Clamped and Free Support Boundary Condition using Polynomial Shear Deformation Theory. Advances in Science, Technology and Engineering Systems Journal, 6(1), 1427–1439. doi:10.25046/aj0601162.
Festus, O., Okeke, E. T., & John, W. (2020). Strain–Displacement expressions and their effect on the deflection and strength of plate. Advances in Science, Technology and Engineering Systems, 5(5), 401–413. doi:10.25046/AJ050551.
Grigorenko, A. Y., Bergulev, A. S., & Yaremchenko, S. N. (2013). Numerical Solution of Bending Problems for Rectangular Plates. International Applied Mechanics, 49(1), 81–94. doi:10.1007/s10778-013-0554-1.
Onyeka, F. C. & Ibearugbulem, O. M. (2020). Load Analysis and Bending Solutions of Rectangular Thick Plate. International Journal on Emerging Technologies, 11(3): 1103–1110.
Fu, G., Tuo, Y., Sun, B., Shi, C., & Su, J. (2022). Bending of variable thickness rectangular thin plates resting on a double-parameter foundation: integral transform solution. Engineering Computations, 39(7), 2689-2704. doi:10.1108/EC-11-2021-0692.
Ibearugbulem, O. M., & Onyeka, F. C. (2020). Moment and Stress Analysis Solutions of Clamped Rectangular Thick Plate. European Journal of Engineering Research and Science, 5(4), 531–534. doi:10.24018/ejers.2020.5.4.1898.
Li, R., Ni, X., & Cheng, G. (2015). Symplectic Superposition Method for Benchmark Flexure Solutions for Rectangular Thick Plates. Journal of Engineering Mechanics, 141(2), 1–17. doi:10.1061/(asce)em.1943-7889.0000840.
Liu, F. L., & Liew, K. M. (1998). Differential cubature method for static solutions of arbitrarily shaped thick plates. International Journal of Solids and Structures, 35(28–29), 3655–3674. doi:10.1016/S0020-7683(97)00215-1.
Lok, T. S., & Cheng, Q. H. (2001). Bending and forced vibration response of a clamped orthotropic thick plate and sandwich panel. Journal of Sound and Vibration, 245(1), 63–78. doi:10.1006/jsvi.2000.3543.
Shen, P., & He, P. (1995). Bending analysis of rectangular moderately thick plates using spline finite element method. Computers & Structures, 54(6), 1023-1029. doi:10.1016/0045-7949(94)00401-N.
Zhong, Y., & Xu, Q. (2017). Analysis Bending Solutions of Clamped Rectangular Thick Plate. Mathematical Problems in Engineering, 2017, 1–6. doi:10.1155/2017/7539276.
DOI: 10.28991/HIJ-2022-03-03-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Festus Chukwudi Onyeka