Social Network Analysis of Cryptocurrency using Business Intelligence Dashboard

Jonathan C. Setyono, William S. Suryawidjaja, Abba S. Girsang


There are currently more than 10.000 cryptocurrencies available to buy from the online market, with a vast range of prices for each coin it sells. The fluctuation of each coin is affected by any social events or by several important companies or people behind it. The aim of this research is to compare three cryptocurrencies, which are Bitcoin, Ethereum, and Binance Coin, using Social Network Analysis (SNA) by visualizing them using Business Intelligence (BI Dashboard). This study uses the SNA parameters of degree, diameter, modularity, centrality, and path length for each network and its actors and their actual market price by crawling(data collecting process) from Twitter as one of the social media platforms. From the research conducted, the popularity of cryptocurrencies is affected by their market price and the activeness of their actors on social media. These results are important because they could help in the decision-making to buy cryptocurrencies with high popularity on social media because they tend to retain their value over time and could benefit from price spikes from influential people.


Doi: 10.28991/HIJ-2022-03-02-09

Full Text: PDF


Business Intelligence; Cryptocurrency; Social Network Analysis; Social Media.


Wada, H. (2021). Assessing the Social Media User’s Credibility Rating of Shared Content, and its Utilization in Decision Making. Emerging Science Journal, 5(2), 191–199. doi:10.28991/esj-2021-01269.

Perrin, A. (2015). Social Media Usage: 2005-2015. In Pew Research Center. Available online: (accessed on March 2022).

Wątorek, M., Drożdż, S., Kwapień, J., Minati, L., Oświęcimka, P., & Stanuszek, M. (2021). Multiscale characteristics of the emerging global cryptocurrency market. Physics Reports, 901, 1–82. doi:10.1016/j.physrep.2020.10.005.

Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: (accessed on April 2022).

Rehman, M. H. U., Salah, K., Damiani, E., & Svetinovic, D. (2020). Trust in Blockchain Cryptocurrency Ecosystem. IEEE Transactions on Engineering Management, 67(4), 1196–1212. doi:10.1109/tem.2019.2948861.

Ante, L. (2021). How Elon Musk's twitter activity moves cryptocurrency markets. SSRN Electronic Journal, 1-28. doi:10.2139/ssrn.3778844.

Vidal-Tomás, D. (2021). Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis. Finance Research Letters, 43, 101981. doi:10.1016/

Park, S., & Park, H. W. (2019). Diffusion of cryptocurrencies: web traffic and social network attributes as indicators of cryptocurrency performance. Quality & Quantity, 54(1), 297–314. doi:10.1007/s11135-019-00840-6.

Alqassem, I., Rahwan, I., & Svetinovic, D. (2020). The Anti-Social System Properties: Bitcoin Network Data Analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(1), 21–31. doi:10.1109/tsmc.2018.2883678.

Javarone, M. A., & Wright, C. S. (2018). From Bitcoin to Bitcoin Cash: A network analysis. CRYBLOCK 2018 - Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. doi:10.1145/3211933.3211947.

Aspembitova, A. T., Feng, L., & Chew, L. Y. (2021). Behavioral structure of users in cryptocurrency market. PLOS ONE, 16(1), e0242600. doi:10.1371/journal.pone.0242600.

Pilar, G.-C., Jaureguizar Arellano, D., & Jaureguizar Francés, C. (2018). The cryptocurrency market: A network analysis. ESIC MARKET Economic and Business Journal, 49(3). doi:10.7200/esicm.161.0493.4i.

Sohaib, O., Hussain, W., Asif, M., Ahmad, M., & Mazzara, M. (2020). A PLS-SEM Neural Network Approach for Understanding Cryptocurrency Adoption. IEEE Access, 8, 13138–13150. doi:10.1109/access.2019.2960083.

Biryukov, A., & Tikhomirov, S. (2019). Deanonymization and Linkability of Cryptocurrency Transactions Based on Network Analysis. Proceedings - 4th IEEE European Symposium on Security and Privacy, (EuroS&P). doi:10.1109/eurosp.2019.00022.

Lin, D., Wu, J., Yuan, Q., & Zheng, Z. (2020). T-EDGE: Temporal WEighted MultiDiGraph Embedding for Ethereum Transaction Network Analysis. Frontiers in Physics, 8. doi:10.3389/fphy.2020.00204.

Ji, Q., Bouri, E., Lau, C. K. M., & Roubaud, D. (2019). Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis, 63, 257–272. doi:10.1016/j.irfa.2018.12.002.

Anticona, P. (2019). Advantages of making a dashboard with a Business Intelligence platform compared to other reporting software. PM World Journal, 8, 1-41.

Camacho, D., Luzón, M. V., & Cambria, E. (2021). New research methods & algorithms in social network analysis. Future Generation Computer Systems, 114, 290–293. doi:10.1016/j.future.2020.08.006.

Valeri, M., & Baggio, R. (2021). Social network analysis: organizational implications in tourism management. International Journal of Organizational Analysis, 29(2), 342–353. doi:10.1108/ijoa-12-2019-1971.

Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. WIREs Data Mining and Knowledge Discovery, 8(5). doi:10.1002/widm.1256.

Dwi Putra Aditama, T. B., & SN, A. (2020). Determining Community Structure and Modularity in Social Network using Genetic Algorithm. Indonesian Journal of Computing and Cybernetics Systems, 14(3), 219. doi:10.22146/ijccs.57834.

Das, K., Samanta, S., & Pal, M. (2018). Study on centrality measures in social networks: a survey. Social Network Analysis and Mining, 8(1). doi:10.1007/s13278-018-0493-2.

Lee, C.-Y., Chong, H.-Y., Liao, P.-C., & Wang, X. (2018). Critical Review of Social Network Analysis Applications in Complex Project Management. Journal of Management in Engineering, 34(2), 04017061. doi:10.1061/(asce)me.1943-5479.0000579.

Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018). Fast Online Analytical Processing for Big Data Warehousing. 2018 International Conference on Intelligent Systems (IS). doi:10.1109/is.2018.8710583.

Negash, S., & Gray, P. (2008). Business Intelligence. Handbook on Decision Support Systems 2, 175–193. doi:10.1007/978-3-540-48716-6_9.

Sun, Z., Sun, L., & Strang, K. (2016). Big Data Analytics Services for Enhancing Business Intelligence. Journal of Computer Information Systems, 58(2), 162–169. doi:10.1080/08874417.2016.1220239.

Full Text: PDF

DOI: 10.28991/HIJ-2022-03-02-09


  • There are currently no refbacks.

Copyright (c) 2022 Jonathan Setyono