Analysis of Vertically Oriented Coupled Shear Wall Interconnected with Coupling Beams

Vikram Singh, Keshav Sangle


The nonlinear static response of a vertically oriented coupled wall subjected to horizontal loading is presented in this research article. The 3 storey vertically oriented coupled wall interconnected with coupling beams is modelled as solid elements in a finite element (FE) software named Abaqus CAE and the steel reinforcement is modelled as a wire element. For simulation of concrete models, a concrete damaged plasticity constitutive model is taken into consideration in this research. Moreover, with the help of concrete damage plasticity parameters, validation of two rectangular planar walls was executed with an error of less than 10 percent. Finally, these parameters are used for modeling and analyzing the static behavior of coupled walls connected with coupling beams. Furthermore, the maximum unidirectional horizontal loading helped in obtaining the compression and tensile damage as well as scalar stiffness degradation. Significantly, the research also found the plastic hinge location in the coupled wall as well as in the coupling beam, which are of utmost importance in nonlinear analysis.


Doi: 10.28991/HIJ-2022-03-02-010

Full Text: PDF


Nonlinear Analysis; Concrete Damaged Plasticity Model; Plastic Hinge Formation.


Santhakumar, A. R. (1974). Ductility of coupled shear walls. PhD thesis, University of Canterbury, Christchurch 8041, New Zealand.

Fischinger, M. (Ed.). (2014). Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society. Geotechnical, Geological and Earthquake Engineering. doi:10.1007/978-94-017-8875-5.

A.C.I. Committee, 318-14 (2019). Building Code Requirements for Structural Concrete and Commentary. Farmington Hills: American Concrete Institute. doi:10.14359/51716937.

Alvarez, R., Restrepo, J. I., Panagiotou, M., & Santhakumar, A. R. (2019). Nonlinear cyclic Truss Model for analysis of reinforced concrete coupled structural walls. Bulletin of Earthquake Engineering, 17(12), 6419–6436. doi:10.1007/s10518-019-00639-8.

Panagiotou, M., Restrepo, J. I., & Conte, J. P. (2011). Shake-Table Test of a Full-Scale 7-Story Building Slice. Phase I: Rectangular Wall. Journal of Structural Engineering, 137(6), 691–704. doi:10.1061/(asce)st.1943-541x.0000332.

Panagiotou, M., & Restrepo, J. I. (2011). Displacement-Based Method of Analysis for Regular Reinforced-Concrete Wall Buildings: Application to a Full-Scale 7-Story Building Slice Tested at UC–San Diego. Journal of Structural Engineering, 137(6), 677–690. doi:10.1061/(asce)st.1943-541x.0000333.

Panagiotou, M., & Restrepo, J. I. (2009). Dual-plastic hinge design concept for reducing higher-mode effects on high-rise cantilever wall buildings. Earthquake Engineering and Structural Dynamics, 38(12), 1359–1380. doi:10.1002/eqe.905.

NIST. (2017). Guidelines for nonlinear structural analysis and design of buildings. Part I - general. In NIST GCR 17-917-46v1 (p. 137). doi:10.6028/NIST.GCR.17-917-46v1.

ASCE 41-13. (2014). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers. doi:10.1061/9780784412855.

Naish, D., Fry, A., Klemencic, R., & Wallace, J. (2013). Reinforced concrete coupling beams-part II: Modeling. ACI Structural Journal, 110(6), 1067–1075. doi:10.14359/51686161.

Zhang, P. (2013). Nonlinear dynamic analysis model for RC shear wall. Applied Mechanics and Materials, 275–277, 1020–1023. doi:10.4028/

Mazars, J., Kotronis, P., & Davenne, L. (2002). A new modelling strategy for the behavior of shear walls under dynamic loading. Earthquake Engineering and Structural Dynamics, 31(4), 937–954. doi:10.1002/eqe.131.

Sholeh, M., Braam, C. R., Hordijk, D. A. & Van Keulen, D.C. (2014). Investigation into behaviour of coupled shear walls by means of continuous method. Master thesis, Technical university of Delft, Delft, Netherlands.

Honarparast, S., & Chaallal, O. (2019). Non-linear time history analysis of reinforced concrete coupled shear walls: Comparison of old design, modern design and retrofitted with externally bonded CFRP composites. Engineering Structures, 185, 353–365. doi:10.1016/j.engstruct.2019.01.113.

Ding, R., Tao, M. X., Nie, X., & Mo, Y. L. (2018). Analytical model for seismic simulation of reinforced concrete coupled shear walls. Engineering Structures, 168, 819–837. doi:10.1016/j.engstruct.2018.05.003.

Lu, X., Xie, L., Guan, H., Huang, Y., & Lu, X. (2015). A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design, 98, 14–25. doi:10.1016/j.finel.2015.01.006.

Turgeon, J. (2011). The seismic performance of coupled reinforced concrete walls. PhD Thesis, University of Washington, Washington, United States. Available online: (accessed on February 2022).

Abdullah, S. A., & Wallace, J. W. (2019). Drift capacity of reinforced concrete structural walls with special boundary elements. ACI Structural Journal, 116(1), 183–194. doi:10.14359/51710864.

Abdullah, S. A. Reinforced Concrete Structural Walls: Test Database and Modeling Parameters. University of California.

Almeida, J. P., Tarquini, D., & Beyer, K. (2016). Modelling Approaches for Inelastic Behaviour of RC Walls: Multi-level Assessment and Dependability of Results. Archives of Computational Methods in Engineering, 23(1), 69–100. doi:10.1007/s11831-014-9131-y.

Eom, T. S., Park, H. G., & Kang, S. M. (2009). Energy-based cyclic force-displacement relationship for reinforced concrete short coupling beams. Engineering Structures, 31(9), 2020–2031. doi:10.1016/j.engstruct.2009.03.008.

Yang, C., Chen, S.-C., Yen, C.-H., & Hung, C.-C. (2022). Behaviour and detailing of coupling beams with high-strength materials. Journal of Building Engineering, 47, 103843. doi:10.1016/j.jobe.2021.103843.

Li, G. Q., Pang, M., Sun, F., Jiang, J., & Hu, D. (2018). Seismic behavior of coupled shear wall structures with various concrete and steel coupling beams. Structural Design of Tall and Special Buildings, 27(1), 1405. doi:10.1002/tal.1405.

Mihaylov, B. I., & Franssen, R. (2017). Shear-flexure interaction in the critical sections of short coupling beams. Engineering Structures, 152, 370–380. doi:10.1016/j.engstruct.2017.09.024.

Seo, S. Y., Yun, H. Do, & Chun, Y. S. (2017). Hysteretic Behavior of Conventionally Reinforced Concrete Coupling Beams in Reinforced Concrete Coupled Shear Wall. International Journal of Concrete Structures and Materials, 11(4), 599–616. doi:10.1007/s40069-017-0221-8.

Wang, T., Shang, Q., Wang, X., Li, J., & Kong, Z. (2018). Experimental validation of RC shear wall structures with hybrid coupling beams. Soil Dynamics and Earthquake Engineering, 111, 14–30. doi:10.1016/j.soildyn.2018.04.021.

Álvarez, R., Restrepo, J. I., Panagiotou, M., & Godínez, S. E. (2020). Analysis of reinforced concrete coupled structural walls via the Beam-Truss Model. Engineering Structures, 220, 111005. doi:10.1016/j.engstruct.2020.111005.

Lehman, D. E., Turgeon, J. A., Birely, A. C., Hart, C. R., Marley, K. P., Kuchma, D. A., & Lowes, L. N. (2013). Seismic Behavior of a Modern Concrete Coupled Wall. Journal of Structural Engineering, 139(8), 1371–1381. doi:10.1061/(asce)st.1943-541x.0000853.

Thomsen, J. H., & Wallace, J. W. (2004). Displacement-Based Design of Slender Reinforced Concrete Structural Walls—Experimental Verification. Journal of Structural Engineering, 130(4), 618–630. doi:10.1061/(asce)0733-9445(2004)130:4(618).

ABAQUS (2014). CAEU Guide: ABAQUS Version 6.14. Groupe Dassault, Paris, France.

Lefas, I. D., Kotsovos, M. D., & Ambraseys, N. N. (1990). Behavior of reinforced concrete structural walls. Strength, deformation characteristics, and failure mechanism. ACI Structural Journal, 87(1), 23–31. doi:10.14359/2911.

Subedi, N. K. (1991). RC‐Coupled Shear Wall Structures. I: Analysis of Coupling Beams. Journal of Structural Engineering, 117(3), 667–680. doi:10.1061/(asce)0733-9445(1991)117:3(667).

Full Text: PDF

DOI: 10.28991/HIJ-2022-03-02-010


  • There are currently no refbacks.

Copyright (c) 2022 VIKRAM SANTOSH SINGH, Keshav Sangle