Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer
Abstract
This study analyzes the interaction between sensor research and technology and different types of cancer (breast, lung, colorectal, and prostate) with the goal of detecting new directions for improving diagnosis and therapeutics in medicine. This study develops an approach to computational scientometrics based on data from the Web of Science from the 1991 to 2021 period. The results of this analysis show the vital role of biosensors and electrochemical biosensors applied in breast cancer, lung cancer, and prostate cancer research. Instead, scientific research of optical sensors is developing main technological trajectories in breast, prostate, and colorectal cancer for improving diagnostics. Finally, oxygen sensor research has a main technological development in breast and lung cancer for new applications in breath analysis directed to treatment processes. Preliminary results presented here clearly illustrate the evolutionary paths of sensor research and technologies that have great potential for developing incremental and radical innovations in cancer diagnosis and therapies. These conclusions are, of course, tentative. There is a need for much more detailed research based on other aspects and factors for detecting stable technological trajectories that can foster the technology transfer of new sensor in cancer research for improving diagnosis and therapeutics, reducing, whenever possible, world-wide mortality of cancer in society.
JEL Classification: I10, O30, O31, O32; O33.
Doi: 10.28991/HIJ-2022-03-03-010
Full Text: PDF
Keywords
References
Andersen, P. D., Jørgensen, B. H., Lading, L., & Rasmussen, B. (2004). Sensor foresight - Technology and market. Technovation, 24(4), 311–320. doi:10.1016/S0166-4972(02)00072-X.
Rao N. S.V., Brooks R.R., Wu C.Q. 2018. Proceedings of International Symposium on Sensor Networks, Systems and Security -Advances in Computing and Networking with Applications, Springer. doi:10.1007/978-3-319-75683-7
Wilson, J. S. (2005). Sensor Technology Handbook. Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-7506-7729-5.X5040-X.
Coccia Mario, Roshani S., Mosleh M. 2021. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors, vol. 21, no. 23: art. N. 7803. doi:10.3390/s21237803.
Bayford, R. H., Damaso, R., Neshatvar, N., Ivanenko, Y., Rademacher, T. W., …, & Demosthenous, A. (2022). Locating Functionalized Gold Nanoparticles Using Electrical Impedance Tomography. IEEE Transactions on Biomedical Engineering, 69(1), 494–502. doi:10.1109/TBME.2021.3100256.
Kaur, B., Kumar, S., & Kaushik, B. K. (2022). Recent advancements in optical biosensors for cancer detection. Biosensors and Bioelectronics, 197. doi:10.1016/j.bios.2021.113805.
Li, B., Pan, W., Liu, C., Guo, J., Shen, J., … , & Zheng, L. (2020). Homogenous Magneto-Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis. ACS Sensors 5(7), 2052–2060. doi:10.1021/acssensors.0c00513.
Li, B., Liu, C., Pan, W., Shen, J., Guo, J., … , & Zheng, L. (2020). Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosensors and Bioelectronics, 168. doi:10.1016/j.bios.2020.112520.
Rey-Barth, S., Pinsault, N., Terrisse, H., Eychenne, C., Rolland, C., Foote, A., Guyot, C., & Bosson, J. L. (2022). A program centered on smart electrically assisted bicycle outings for rehabilitation after breast cancer: A pilot study. Medical Engineering and Physics, 100, 103758. doi:10.1016/j.medengphy.2022.103758.
Girsang, A. S., & Abimanyu, A. (2021). Development of an Enterprise Architecture for Healthcare using TOGAF ADM. Emerging Science Journal, 5(3), 305-321. doi:10.28991/esj-2021-01278.
Thakare, S., Shaikh, A., Bodas, D., & Gajbhiye, V. (2022). Application of dendrimer-based nanosensors in immunodiagnosis. Colloids and Surfaces B: Biointerfaces, 209. doi:10.1016/j.colsurfb.2021.112174.
Wu, Y., Feng, Y., & Li, X. (2022). Classification of breast cancer by a gold nanoparticle based multicolor fluorescent aptasensor. Journal of Colloid and Interface Science, 611, 287–293. doi:10.1016/j.jcis.2021.12.039.
Lu, J. Y., Chen, Q. Y., Meng, S. C., & Feng, C. J. (2022). A dye-andrographolide assembly as a turn-on sensor for detection of phthalate in both cells and fish. Analytica Chimica Acta, 1195, 339460. doi:10.1016/j.aca.2022.339460.
Pothipor, C., Bamrungsap, S., Jakmunee, J., & Ounnunkad, K. (2022). A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids and Surfaces B: Biointerfaces, 210. doi:10.1016/j.colsurfb.2021.112260.
Kim, G., Wu, Q., Chu, J. L., Smith, E. J., Oelze, M. L., Moore, J. S., & Li, K. C. (2022). Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 119(4). doi:10.1073/pnas.2109791119.
Mohan, B., Kumar, S., Xi, H., Ma, S., Tao, Z., Xing, T., You, H., Zhang, Y., & Ren, P. (2022). Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics, 197. doi:10.1016/j.bios.2021.113738.
Bax, C., Prudenza, S., Gaspari, G., Capelli, L., Grizzi, F., & Taverna, G. (2022). Drift compensation on electronic nose data for non-invasive diagnosis of prostate cancer by urine analysis. In iScience, 25(1), 103622. doi:10.1016/j.isci.2021.103622.
Prema, P., Boobalan, T., Arun, A., Rameshkumar, K., Suresh Babu, R., Veeramanikandan, V., Nguyen, V. H., & Balaji, P. (2022). Green tea extract mediated biogenic synthesis of gold nanoparticles with potent anti-proliferative effect against PC-3 human prostate cancer cells. Materials Letters, 306. doi:10.1016/j.matlet.2021.130882.
Coccia M. (2012). Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine. Int. J. Healthcare Technology and Management, 13(4), 184-197. doi:10.1504/IJHTM.2012.050616
Coccia M. (2012). Driving forces of technological change in medicine: Radical innovations induced by side effects and their impact on society and healthcare, Technology in Society, 34(4), 271-283. doi:10.1016/j.techsoc.2012.06.002
Coccia M. (2014). Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: the effects on strategic management of the R&D corporate change, Technology Analysis & Strategic Management, 26(7), 733-749. doi:10.1080/09537325.2014.882501
Coccia M. (2016). Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organizational performance in the discovery process of R&D labs, Technology Analysis & Strategic Management, 28(4), 381-395. doi:10.1080/09537325.2015.1095287.
Coccia M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, (29)9, 1048-1061. doi:10.1080/09537325.2016.1268682.
Coccia M. (2017). The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy's Mobile User Objective System, Technological Forecasting & Social Change, 116 (March), 331-339. doi:10.1016/j.techfore.2016.05.019.
Coccia M., Finardi U. (2013). New technological trajectories of non-thermal plasma technology in medicine. Int. J. Biomedical Engineering and Technology, 11(4), 337-356. doi:10.1504/IJBET.2013.055665.
Coccia M., Finardi U., Margon D. (2012). Current trends in nanotechnology research across worldwide geo-economic players, The Journal of Technology Transfer, 37(5), 777-787. doi:10.1007/s10961-011-9219-6.
Coccia M. (2020). Asymmetry of the technological cycle of disruptive innovations. Technology Analysis & Strategic Management, 32(12), 1462-1477. doi:10.1080/09537325.2020.1785415.
Joshi, S., Guruprasad, G., Kulkarni, S., & Ghosh, R. (2022). Reduced Graphene Oxide Based Electronic Sensors for Rapid and Label-Free Detection of CEA and CYFRA 21-1. IEEE Sensors Journal, 22(2), 1138–1145. doi:10.1109/JSEN.2021.3132637.
Kaya, S. I., Ozcelikay, G., Mollarasouli, F., Bakirhan, N. K., & Ozkan, S. A. (2022). Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sensors and Actuators B: Chemical, 351. doi:10.1016/j.snb.2021.130856.
Tumuluru, P., Hrushikesava Raju, S., Santhi, M.V.B.T., Subba Rao, G., Seetha Rama Krishna, P., Koujalagi, A. (2022). Smart Lung Cancer Detector Using a Novel Hybrid for Early Detection of Lung Cancer. Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, 311. Springer, Singapore. doi:10.1007/978-981-16-5529-6_64.
Jiang, X., Wang, C., Ke, Z., Duo, L., Wu, T., Wang, W., Yang, Y., & Dai, Y. (2022). The ion channel TRPV1 gain-of-function reprograms the immune microenvironment to facilitate colorectal tumorigenesis. Cancer Letters, 527, 95–106. doi:10.1016/j.canlet.2021.12.012.
Welz, L., Kakavand, N., Hang, X., Laue, G., Ito, G., Silva, M. G., … Aden, K. (2022). Epithelial X-Box Binding Protein 1 Coordinates Tumor Protein p53-Driven DNA Damage Responses and Suppression of Intestinal Carcinogenesis. Gastroenterology, 162(1), 223–237.e11. doi:10.1053/j.gastro.2021.09.057.
Coccia M. 2018a. General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology, Scientometrics, 117(2), 1265-1283. doi:10.1007/s11192-018-2902-8.
Coccia M., Mosleh M., Roshani S., (2022). Evolution of quantum computing: Theoretical and innovation management implications for emerging quantum industry. IEEE Transactions on Engineering Management. doi:10.1109/TEM.2022.3175633.
Ardito, L., Coccia, M., & Messeni Petruzzelli, A. (2021). Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R & D Management, 51(4), 381–392. doi:10.1111/radm.12455.
Jia, Y., Lu, V., Hoberock, J., Garland, M. and Hart, J.C., 2012. Edge v. node parallelism for graph centrality metrics. In GPU Computing Gems Jade Edition (pp. 15-28). Morgan Kaufmann.
Coccia M. (2004). Spatial metrics of the technological transfer: analysis and strategic management, Technology Analysis & Strategic Management, (16)1, 31-52. doi:10.1080/0953732032000175490.
Coccia, M. (2007). Spatial mobility of knowledge transfer and absorptive capacity: analysis and measurement of the impact within the geoeconomic space. The Journal of Technology Transfer, 33(1), 105–122. doi:10.1007/s10961-007-9032-4.
Coccia M. (2018). An introduction to the theories of institutional change, Journal of Economics Library, 5(4), 337-344. doi:10.1453/jel.v5i4.1788.
Mosleh M., Roshani S., Coccia M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics, 127, 1931–1951. doi:10.1007/s11192-022-04300-1.
Roshani, S., Bagherylooieh, M.-R., Mosleh, M., & Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics, 126(9), 7859–7874. doi:10.1007/s11192-021-04077-9.
World Health Organization-Cancer Today (2020). Estimated age-standardized incidence and mortality rates (World) in 2020, worldwide, both sexes, all ages. International Agency for research on Cancer, World Health Organization. Available online: https://bit.ly/3JWpoT6 (accessed on March 2022).
Web of Science (2022). Web of Science Core Collection, Document Search, Clarivate. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on April 2022).
Coccia, M. (2020). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 1–11. doi:10.1016/j.techsoc.2019.101198.
Delecroix, B., & Epstein, R. (2004). Co-word analysis for the non-scientific information example of Reuters Business Briefings. Data Science Journal, 3, 80–87. doi:10.2481/dsj.3.80.
Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. Indiana, United States. Available online: https://sci2.cns.iu.edu (accessed on April 2022).
Quirin, A., Cordón, O., Guerrero-Bote, V. P., Vargas-Quesada, B., & Moya-Anegón, F. (2008). A quick MST-based algorithm to obtain pathfinder networks (∞, n - 1). Journal of the American Society for Information Science and Technology, 59(12), 1912–1924. doi:10.1002/asi.20904.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media, 3(1), 361-362, 17-20 May, 2009, San Jose, United States.
Chagpar, A. B., & Coccia, M. (2019). Factors associated with breast cancer mortality-per-incident case in low-to-middle income countries (LMICs). Journal of Clinical Oncology, 37(15_suppl), 1566–1566. doi:10.1200/jco.2019.37.15_suppl.1566.
Harbeck, N., & Gnant, M. (2017). Breast cancer. The Lancet, 389(10074), 1134-1150. doi:10.1016/S0140-6736(16)31891-8.
Coccia, M. (2021). Technological Innovation. The Blackwell Encyclopedia of Sociology. Edited by George Ritzer and Chris Rojek. John Wiley & Sons, Ltd. doi:10.1002/9781405165518.wbeost011.pub2.
Pagliaro, M., & Coccia, M. (2021). How self-determination of scholars outclasses shrinking public research lab budgets, supporting scientific production: a case study and R&D management implications. Heliyon, 7(1), 5998. doi:10.1016/j.heliyon.2021.e05998.
Coccia, M. (2019). A theory of classification and evolution of technologies within a Generalised Darwinism. Technology Analysis and Strategic Management, 31(5), 517–531. doi:10.1080/09537325.2018.1523385.
Coccia, M., & Watts, J. (2020). A theory of the evolution of technology: Technological parasitism and the implications for innovation management. Journal of Engineering and Technology Management, 55. doi:10.1016/j.jengtecman.2019.11.003.
Zou, L., Liu, X., Zhou, Y., Mei, W., Wang, Q., Yang, X., & Wang, K. (2022). Optical fiber amplifier and thermometer assisted point-of-care biosensor for detection of cancerous exosomes. Sensors and Actuators B: Chemical, 351. doi:10.1016/j.snb.2021.130893.
Coccia M., Wang L. (2015). Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting & Social Change, 94(May):155–169. doi:10.1016/j.techfore.2014.09.007.
Coccia M., Wang L. (2016). Evolution and convergence of the patterns of international scientific collaboration, Proceedings of the National Academy of Sciences of the United States of America, 2016 February 23, 113(8), 2057-2061. doi:10.1073/pnas.1510820113.
Coccia M. (2020). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics, Scientometrics, 124, 451-487. doi:10.1007/s11192-020-03464-y.
Coccia M. (2022). Technological trajectories in quantum computing to design a quantum ecosystem for industrial change, Technology Analysis & Strategic Management, 1-16. doi:10.1080/09537325.2022.2110056.
Coccia M. (2021). Comparative Critical Decisions in Management. In: Farazmand A. (Eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. doi:10.1007/978-3-319-31816-5_3969-1.
Coccia M. (2018). Classification of innovation considering technological interaction, Journal of Economics Bibliography, 5(2), 76-93. doi:10.1453/jeb.v5i2.1650.
Coccia, M. (2017). A new classification of technologies, Working Paper CocciaLab n. 26/2, Arizona State University (USA), arXiv eLibrary. Available online: http://arxiv.org/abs/1712.07711 (accessed on May 2022).
Coccia M. (2018). Types of government and innovative performance of countries, J. Adm. Soc. Sci., vol. 5, n. 1, pp. 15-33, doi:10.1453/jsas.v5i1.1573.
Coccia M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, vol. 68, February, n. 101874. doi:10.1016/j.techsoc.2022.101874.
Coccia, M. (2020). Fishbone diagram for technological analysis and foresight. International Journal of Foresight and Innovation Policy, 14(2/3/4), 225. doi:10.1504/ijfip.2020.111221.
Coccia M. (2017). The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies. Journal of Social and Administrative Sciences, vol. 4, n. 4, pp. 291-303. doi:10.1453/jsas.v4i4.1518
Coccia M. 2020. Destructive Technologies for Industrial and Corporate Change. In: Farazmand A. (Eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer. doi:10.1007/978-3-319-31816-5_3972-1.
Coccia M. 2022. Critical innovation strategies for achieving competitive strategic entrepreneurship in ever-increasing turbulent markets. In Faghih N., Forouharfar Amir (Eds.), Strategic Entrepreneurship-Perspectives on Dynamics, Theories, and Practices, Springer, Chapter 12, 255-272. doi:10.1007/978-3-030-86032-5.
DOI: 10.28991/HIJ-2022-03-03-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mario Coccia