AHP Approach for Determining Category in Social Media Content Creation in Order to Maximize Revenue per Mille (RPM)
Abstract
Doi: 10.28991/HIJ-2022-03-01-07
Full Text: PDF
Keywords
References
Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business Horizons, 52(4), 357–365. doi:10.1016/j.bushor.2009.03.002.
Shao, G. (2009). Understanding the appeal of user-generated media: a uses and gratification perspective. Internet Research, 19(1), 7–25. doi:10.1108/10662240910927795.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. doi:10.1016/j.bushor.2009.09.003.
Khan, G. F., & Vong, S. (2014). Virality over youtube: An empirical analysis. Internet Research, 24(5), 629–647. doi:10.1108/IntR-05-2013-0085.
Helming, A. G., Adler, D. S., Keltner, C., Igelman, A. D., & Woodworth, G. E. (2021). The Content Quality of YouTube Videos for Professional Medical Education: A Systematic Review. Academic Medicine, 96(10), 1484–1493. doi:10.1097/ACM.0000000000004121.
Buntain, C., Bonneau, R., Nagler, J., & Tucker, J. A. (2021). YouTube Recommendations and Effects on Sharing across Online Social Platforms. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–26. doi:10.1145/3449085.
Budzinski, O., Gaenssle, S., & Lindstädt, N. (2020). The Battle of YouTube, TV and Netflix – An Empirical Analysis of Competition in Audio-visual Media Markets. SSRN Electronic Journal, 1(9), 1–26. doi:10.2139/ssrn.3569553.
Sashittal, H. C., & Jassawalla, A. R. (2021). Brands as personal narratives: learning from user–YouTube–brand interactions. Journal of Brand Management, 28(6), 657–670. doi:10.1057/s41262-021-00248-4.
Yang, W., & Qian, Z. (2011). Understanding the characteristics of category-specific YouTube videos. In Entstanden im Rahmen eines Informatikseminars an der kanadischen Simon Fraser University, Burnaby, Canada.
Benevenuto, F., Duarte, F., Rodrigues, T., Almeida, V., Almeida, J., & Ross, K. (2008). Understanding video interactions in youtube. MM’08 - Proceedings of the 2008 ACM International Conference on Multimedia, with Co-Located Symposium and Workshops, 761–764. doi:10.1145/1459359.1459480.
Laininen, P., & Hämäläinen, R. Analyzing AHP-matrices by Regression. European Journal of Operational Research, 148, 514–524 10 1016 0377–2217 02 00430–7.
Park, M., Naaman, M., & Berger, J. (2016). A data-driven study of view duration on YouTube. Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, Cologne, Germany, 651–654.
Lange, P. G. (2007). Publicly private and privately public: Social networking on YouTube. Journal of Computer-Mediated Communication, 13(1), 361–380. doi:10.1111/j.1083-6101.2007.00400.x.
Cha, M., Kwak, H., Rodriguez, P., Ahnt, Y. Y., & Moon, S. (2007). I tube, you tube, and everybody tubes: Analyzing the world’s largest user generated content video system. Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, 1–14. doi:10.1145/1298306.1298309.
Tu, Z., Wang, Y., Birkbeck, N., Adsumilli, B., & Bovik, A. C. (2021). UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content. IEEE Transactions on Image Processing, 30, 4449–4464. doi:10.1109/TIP.2021.3072221.
Wei, J., Yang, X., & Dong, Y. (2021). User-generated video emotion recognition based on key frames. Multimedia Tools and Applications, 80(9), 14343–14361. doi:10.1007/s11042-020-10203-1.
DOI: 10.28991/HIJ-2022-03-01-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Kevin De Guzman