Cohesive Methodology in Construction of Enclosure for 3.6m Devasthal Optical Telescope

Tarun Bangia, Ramesh Raskar

Abstract


Building telescope enclosures is vital for setting up any optical observatory. An enclosure was constructed in remote hilly terrain to provide shelter to India’s largest 3.6 m Devasthal Optical Telescope (DOT). Primarily, the enclosure was built to protect the telescope from tough weather conditions and provide optimum space for performing various telescope related operational and maintenance activities. Other elements that were considered in the building enclosure were low thermal mass, sustainability, seismic and acoustic considerations. A steel building designed with mostly bolted connections, suitably selected materials, and mechanical systems for facilitating construction activities on site has been built for the telescope at the Devasthal site of ARIES. The enclosure construction was quite a challenging task with various project complexities. Multidisciplinary works of civil, mechanical and electrical systems in enclosure required efforts on various fronts in parallel to achieve the targets. Limitations of resources, manpower, and site conditions were managed to keep flexibility and economics in construction. Numerous challenges faced during the making of enclosures have been discussed in the paper. Insights into the construction of enclosures will provide a basic framework and learning opportunities for managing such typical construction projects in adverse weather conditions at mountainous sites.

 

Doi: 10.28991/HIJ-2022-03-02-05

Full Text: PDF


Keywords


Construction Technology; Devasthal; DOT; Structure; Telescope Enclosure.

References


Neill, D. R., DeVries, J., Hileman, E., Sebag, J., Gressler, W., Wiecha, O., Andrew, J., & Schoening, W. (2014). Baseline design and requirements for the LSST rotating enclosure (dome). Ground-Based and Airborne Telescopes V, 91454O, 1636-1652. doi:10.1117/12.2056521.

Sutherland, W., Emerson, J., Dalton, G., Atad-Ettedgui, E., Beard, S., Bennett, R., Bezawada, N., Born, A., Caldwell, M., Clark, P., Craig, S., Henry, D., Jeffers, P., Little, B., McPherson, A., Murray, J., Stewart, M., Stobie, B., Terrett, D., … Woodhouse, G. (2015). The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance. Astronomy and Astrophysics, 575(A25), 1–27. doi:10.1051/0004-6361/201424973.

Harding, G. A., Mack, B., Smith, F. G., & Stokoe, J. R. (1979). On the avoidance of bad seeing conditions within telescope domes. Monthly Notices of the Royal Astronomical Society, 188(2), 241–247. doi:10.1093/mnras/188.2.241.

Kärcher, H. J. (2009). Telescope structures worldwide. Steel Construction, 2(3), 149–160. doi:10.1002/stco.200910019.

Chawhan, V., & Arif Kamal, M. (2021). A Study of Planning, Design and Construction of Buildings in Hilly Regions of India. American Journal of Civil Engineering and Architecture, 9(1), 13–22. doi:10.12691/ajcea-9-1-3.

Chen, W. F., & Liew, J. R. (2003). The civil engineering handbook. CRC Press, Florida, United States.

Sagar, R., Stalin, C. S., Pandey, A. K., Uddin, W., Mohan, V., Sanwal, B. B., Gupta, S. K., Yadav, R. K. S., Durgapal, A. K., Joshi, S., Kumar, B., Gupta, A. C., Joshi, Y. C., Srivastava, J. B., Chaubey, U. S., Singh, M., Pant, P., & Gupta, K. G. (2000). Evaluation of devasthal site for optical astronomical observations. Astronomy and Astrophysics Supplement Series, 144(2), 349–362. doi:10.1051/aas:2000213.

Sagar, R., Omar, A., Kumar, B., Gopinathan, M., Pandey, S. B., Bangia, T., Pant, J., Shukla, V., & Yadava, S. (2011). The new 130-cm optical telescope at Devasthal, Nainital. Current Science, 101(8), 1020–1023.

Bangia, T. (2017). Unique Roll-Off Roof for Housing 1.3 m Telescope at Devasthal, Nainital. Journal of the Institution of Engineers (India): Series C, 98(3), 359–366. doi:10.1007/s40032-016-0242-0.

Indian Standard: 1893 (2002). “Criteria for Earthquake Resistant Design of Structures”, Part 1: General provisions and buildings, 5th revision, Bureau of Indian standards, 1-39, New Delhi, India.

Yamauchi, H., & Kawahara, S. Enclosure of SUBARU Telescope. Symposium on Astronomical Telescopes and Instrumentation for the 21st Century, Proceedings of SPIE Advanced Technology Optical Telescopes V in Kailua, 2199, 430–441.

Bely, P. Y. (2003). The Design and Construction of Large Optical Telescopes with 327 Illustrations. Springer-Verlag New York, Inc, USA. doi:10.1007/b97612.

Pandey, A. K., Shukla, V., Bangia, T., Raskar, R. D., Kulkarni, R. R., & Ghanti, A. S. (2012). Enclosure design for the ARIES 3.6m optical telescope. Ground-Based and Airborne Telescopes IV, 8444, 844441. doi:10.1117/12.926001.

Bangia, T., & Uddin, W. (2020). Sustaining mechanical systems of 3.6m optical telescope at Devasthal, India. Ground-Based and Airborne Telescopes VIII 2020 Proceedings in SPIE Astronomical Telescopes, Instrumentation Online Conference, 11445, 32. doi:10.1117/12.2561220.

Pant, P., Stalin, C. S., & Sagar, R. (1999). Microthermal measurements of surface layer seeing at Devasthal site. In Astronomy and Astrophysics Supplement Series, 136(1), 19–25. doi:10.1051/aas:1999195.

Bangia, T., Raskar, R., & Ghanti, A. S. Acoustics and Functional Space Design of 3.6m Devasthal Optical Telescope Building. Technologies for a Quieter India 2013 Proceedings in Acoustics in New Delhi, India, 201–207.

Bangia, T., Yadava, S., Kumar, B., Ghanti, A. S., & Hardikar, P. M. (2016). Customized overhead cranes for installation of India’s largest 3.6m optical telescope at Devasthal, Nainital, India. Ground-Based and Airborne Telescopes VI, 9906, 990620. doi:10.1117/12.2232127.

Ermis, K., Caliskan, M., & Tanriverdi, M. (2021). Design Optimization of Moveable Moment Stabilization System for Access Crane Platforms. Acta Polytechnica, 61(1), 219–229. doi:10.14311/ap.2021.61.0219.


Full Text: PDF

DOI: 10.28991/HIJ-2022-03-02-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Tarun Bangia, Ramesh Raskar