Statistical Similarity of Mortality and Recovery Ratios for Covid-19 Patients based on Gender and Age
Abstract
Doi: 10.28991/HIJ-2021-02-04-05
Full Text: PDF
Keywords
References
Di Mascio, D., Khalil, A., Saccone, G., Rizzo, G., Buca, D., Liberati, M., Vecchiet, J., Nappi, L., Scambia, G., Berghella, V., &D’Antonio, F. (2020). Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. American Journal of Obstetrics and Gynecology MFM, 2(2). doi:10.1016/j.ajogmf.2020.100107.
Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., … Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214–217. doi:10.1016/j.ijid.2020.01.050.
Law, S., Leung, A. W., & Xu, C. (2020). Severe acute respiratory syndrome (SARS) and coronavirus disease-2019 (COVID-19): From causes to preventions in Hong Kong. International Journal of Infectious Diseases, 94, 156–163. doi:10.1016/j.ijid.2020.03.059.
Roberts, G. V., & Gee, P. O. (2020). The early days: The postkidney transplant recipients’ covid-19 journey. Clinical Journal of the American Society of Nephrology 15(9), 1221–1223. doi:10.2215/CJN.08780620.
Sun, L., Depuy, G. W., & Evans, G. W. (2014). Multi-objective optimization models for patient allocation during a pandemic influenza outbreak. Computers and Operations Research, 51, 350–359. doi:10.1016/j.cor.2013.12.001.
Pastore, M., &Calcagnì, A. (2019). Measuring distribution similarities between samples: A distribution-free overlapping index. Frontiers in Psychology, 10, 1089. doi:10.3389/fpsyg.2019.01089.
Lee, L. (1999). Measures of distributional similarity. Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics, Maryland, United States. 25–32. doi:10.3115/1034678.1034693.
Sahinturk, L., &Özcan, B. (2017). The Comparison of Hypothesis Tests Determining Normality and Similarity of Samples. Journal of Naval Science and Engineering, 13(2), 21–36.
Vrbik, J. (2018). Small-Sample Corrections to Kolmogorov–Smirnov Test Statistic. Pioneer Journal of Theoretical and Applied Statistics, 15(1–2), 15–23.
Arnold, T. B., & Emerson, J. W. (2011). Nonparametric goodness-of-fit tests for discrete null distributions. R Journal, 3(2), 34-39.
Lopes, R. H., Reid, I. D., & Hobson, P. R. (2007). The two-dimensional Kolmogorov-Smirnov test. Proceedings of Science. XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Amsterdam, Netherlands.
Simard, R., &L’Ecuyer, P. Computing the two-sided Kolmogorov-Smirnov distribution. Journal of Statistical Software, 39(11), 1–18.
Drezner, Z., Turel, O., &Zerom, D. (2010). A modified kolmogorov-smirnov test for normality. Communications in Statistics: Simulation and Computation, 39(4), 693–704. doi:10.1080/03610911003615816.
Mahmoudabadi, A., &Abdous, H. (2020). Do the Coaches’ Crashes and Their Usage Exposure Come from the Same Distributions? Society & Sustainability, 2(3), 10–19. doi:10.38157/society_sustainability.v2i3.165.
Stolwijk, C., van Onna, M., Boonen, A., & van Tubergen, A. (2016). Global Prevalence of Spondyloarthritis: A Systematic Review and Meta-Regression Analysis. Arthritis Care and Research, 68(9), 1320–1331. doi:10.1002/acr.22831.
Dash, S., Shakyawar, S. K., Sharma, M., &Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data, 6(1), 54. doi:10.1186/s40537-019-0217-0.
Panay, B., Baloian, N., Pino, J., Peñafiel, S., Sanson, H., &Bersano, N. (2019). Predicting Health Care Costs Using Evidence Regression. In Proceedings (Vol. 31, Issue 1). Multidisciplinary Digital Publishing Institute Proceedings. doi:10.3390/proceedings2019031074.
Myers, J., Tan, S. Y., Abella, J., Aleti, V., &Froelicher, V. F. (2007). Comparison of the chronotropic response to exercise and heart rate recovery in predicting cardiovascular mortality. European Journal of Preventive Cardiology, 14(2), 215–221. doi:10.1097/HJR.0b013e328088cb92.
Hogan, H., Zipfel, R., Neuburger, J., Hutchings, A., Darzi, A., & Black, N. (2015). Avoidability of hospital deaths and association with hospital-wide mortality ratios: Retrospective case record review and regression analysis. BMJ (Online), 351, 3239. doi:10.1136/bmj.h3239.
Lenzi, J., Caporlingua, F., Caporlingua, A., Anichini, G., Nardone, A., Passacantilli, E., & Santoro, A. (2017). Relevancy of positive trends in mortality and functional recovery after surgical treatment of acute subdural hematomas. Our 10-year experience. British Journal of Neurosurgery, 31(1), 78–83. doi:10.1080/02688697.2016.1226253.
Polaraju, K., Durga Prasad, D., & Tech Scholar, M. (2017). Prediction of Heart Disease using Multiple Linear Regression Model. International Journal of Engineering Development and Research, 5(4), 2321–9939.
Pandey, G., Chaudhary, P., Gupta, R., & Pal, S. (2020). SEIR and Regression Model based COVID-19 outbreak predictions in India. doi:10.1101/2020.04.01.20049825.
Riascos, A., & Serna, N. (2017). Predicting Annual Length-Of-Stay and its Impact on Health (Vol. 69). Medical Informatics and Healthcare. Available online: http://proceedings.mlr.press/v69/riascos17a.html (accessed on May 2021).
Ujah, I. A., Aisien, O. A., Mutihir, J. T., Vanderjagt, D. J., Glew, R. H., &Uguru, V. E. (2005). Factors contributing to maternal mortality in north-central Nigeria: a seventeen-year review. African Journal of Reproductive Health, 9(3), 27–40. doi:10.2307/3583409.
Kowalski, L. P., Sanabria, A., Ridge, J. A., Ng, W. T., de Bree, R., Rinaldo, A., Takes, R. P., Mäkitie, A. A., Carvalho, A. L., Bradford, C. R., Paleri, V., Hartl, D. M., Vander Poorten, V., Nixon, I. J., Piazza, C., Lacy, P. D., Rodrigo, J. P., Guntinas-Lichius, O., Mendenhall, W. M., … Ferlito, A. (2020). COVID-19 pandemic: Effects and evidence-based recommendations for otolaryngology and head and neck surgery practice. Head and Neck, 42(6), 1259–1267. doi:10.1002/hed.26164.
Tuite, A. R., Bogoch, I. I., Sherbo, R., Watts, A., Fisman, D., & Khan, K. (2020). Estimation of Coronavirus Disease 2019 (COVID-19) Burden and Potential for International Dissemination of Infection from Iran. Annals of Internal Medicine, 172(10), 699–701. doi:10.7326/m20-0696.
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., &Lessler, J. (2020). The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577–582. doi:10.7326/M20-0504.
Nishiura, H., Kobayashi, T., Miyama, T., Suzuki, A., Jung, S. mok, Hayashi, K., Kinoshita, R., Yang, Y., Yuan, B., Akhmetzhanov, A. R., & Linton, N. M. (2020). Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). International Journal of Infectious Diseases, 94, 154–155. doi:10.1016/j.ijid.2020.03.020.
Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A., & Jewell, C. P. (2020). Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. doi:10.1101/2020.01.23.20018549.
Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease Modelling, 5, 248–255. doi:10.1016/j.idm.2020.02.001.
DOI: 10.28991/HIJ-2021-02-04-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Abbas Mahmoudabadi