Engine Downsizing; Global Approach to Reduce Emissions: A World-Wide Review

Mohammad Mostafa Namar, Omid Jahanian, Rouzbeh Shafaghat, Kamyar Nikzadfar


Engine downsizing is a promising method to reduce emissions and fuel consumption of internal combustion engines. The main concept is to reduce engine displacement volume while keeping the needed output characteristics unchanged. The issue has become one of the most current fields of interest in recent years after the International Energy Agency set a target of a 50% reduction in global average emissions by the year 2030. In this review paper, different aspects of researchers’ efforts on engine downsizing are configured and, due to overlaps, categorized into five main areas. Each category is discussed thoroughly, and recent works are highlighted. The global attention in these categories, the countries involved and the trend change in the last four years are presented in detail.


Doi: 10.28991/HIJ-2021-02-04-010

Full Text: PDF


Internal Combustion Engines; Engine Downsizing; Emissions.


Scott, D., & Gössling, S. (2021). Destination net-zero: what does the international energy agency roadmap mean for tourism? Journal of Sustainable Tourism, 1–18. doi:10.1080/09669582.2021.1962890.

Jahanian, O., & Jazayeri, S. A. (2010). The effects of using formaldehyde as an additive on the performance of an hcci engine fueled with natural gas. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 5, Issue (A and B), 601–609. American Society of Mechanical Engineers. doi:10.1115/IMECE2010-38074.

Ezoji, H., Shafaghat, R., & Jahanian, O. (2019). Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions. Journal of Thermal Analysis and Calorimetry, 135(3), 1775–1785. doi:10.1007/s10973-018-7271-2.

Namar, M. M., & Jahanian, O. (2017). A simple algebraic model for predicting HCCI auto-ignition timing according to control oriented models requirements. Energy Conversion and Management, 154, 38–45. doi:10.1016/j.enconman.2017.10.056.

Li, J., Ling, X., Liu, D., Yang, W., & Zhou, D. (2018). Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine. Applied Energy, 211, 382–392. doi:10.1016/j.apenergy.2017.11.062.

Lang, O. (2004). Turbocharged engine with gasoline direct injection. AutoTechnology, 4(6), 56–59. doi:10.1007/BF03246862.

Silva, C., Ross, M., & Farias, T. (2009). Analysis and simulation of “low-cost” strategies to reduce fuel consumption and emissions in conventional gasoline light-duty vehicles. Energy Conversion and Management, 50(2), 215–222. doi:10.1016/j.enconman.2008.09.046.

Patil, C., Varade, S., & Wadkar, S. (2017). A review of engine downsizing and its effects. International Journal of Current Engineering and Technology, 7(7), 319-324.

Merker, G. P., Schwarz, C., & Teichmann, R. (2012). Combustion engines development: Mixture formation, combustion, emissions and simulation. In G P Merker, C. Schwarz, & R. Teichmann (Eds.), Combustion Engines Development: Mixture Formation, Combustion, Emissions and Simulation (Vol. 9783642140945). Springer Science & Business Media. doi:10.1007/978-3-642-14094.

Kuhlbach, K., Mehring, J., Borrmann, D., & Friedfeld, R. (2009). Zylinderkopf mit integriertem Abgaskrümmer für Downsizing-Konzepte. MTZ - Motortechnische Zeitschrift, 70(4), 286–293. doi:10.1007/bf03225480.

Smith, A. (2008). Stroke of genius for gasoline downsizing. Ricardo Quarterly Review, Q3, 8-14.

Ricardo, M. B., Apostolos, P., & Yang, M. Y. (2011). Overview of boosting options for future downsized engines. Science China Technological Sciences, 54(2), 318–331. doi:10.1007/s11431-010-4272-1.

Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2015). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810–825. doi:10.1177/1468087414552289.

Pielecha, I., Cieślik, W., Borowski, P., Czajka, J., & Bueschke, W. (2014). Reduction of the number of cylinders in internal combustion engines–contemporary trends in downsizing. Combustion Engines, 53.

Sroka, Z. (2015). The impact assessment of downsizing on the development of internal combustion engines referring to the competition “engine of the year.” Journal of KONES, 22(3), 229–234. doi:10.5604/12314005.1166031.

Hu, B., Akehurst, S., & Brace, C. (2016). Novel approaches to improve the gas exchange process of downsized turbocharged spark-ignition engines: A review. International Journal of Engine Research, 17(6), 595–618. doi:10.1177/1468087415599866.

Hu, B., Turner, J. W. G., Akehurst, S., Brace, C., & Copeland, C. (2017). Observations on and potential trends for mechanically supercharging a downsized passenger car engine:a review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(4), 435–456. doi:10.1177/0954407016636971.

Hu, K., & Chen, Y. (2016). Technological growth of fuel efficiency in European automobile market 1975–2015. Energy Policy, 98, 142–148. doi:10.1016/j.enpol.2016.08.024.

Wang, C., Zeraati-Rezaei, S., Xiang, L., & Xu, H. (2017). Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Applied Energy, 191, 603–619. doi:10.1016/j.apenergy.2017.01.081.

Lee, W., Schubert, E., Li, Y., Li, S., Bobba, D., & Sarlioglu, B. (2017). Overview of Electric Turbocharger and Supercharger for Downsized Internal Combustion Engines. IEEE Transactions on Transportation Electrification, 3(1), 36–47. doi:10.1109/TTE.2016.2620172.

Marinkov, S., Murgovski, N., & De Jager, B. (2016). Convex Modeling and Sizing of Electrically Supercharged Internal Combustion Engine Powertrain. IEEE Transactions on Vehicular Technology, 65(6), 4523–4534. doi:10.1109/TVT.2015.2510510.

Lee, W., Schubert, E., Li, Y., Silong Li, Bobba, D., & Sarlioglu, B. (2016). Electrification of turbocharger and supercharger for downsized internal combustion engines and hybrid electric vehicles-benefits and challenges. 2016 IEEE Transportation Electrification Conference and Expo (ITEC). doi:10.1109/itec.2016.7520254.

Stoffels, H., Dunstheimer, J., & Hofmann, C. (2017). Potential of Electric Energy Recuperation by Means of the Turbocharger on a Downsized Gasoline Engine. SAE Technical Paper Series. doi:10.4271/2017-24-0162.

Budack, R., Wurms, R., Mendl, G., & Heiduk, T. (2016). The New Audi 2.0-l I4 TFSI Engine. MTZ Worldwide, 77(5), 16–23. doi:10.1007/s38313-016-0035-0.

Hancock, D., Fraser, N., Jeremy, M., Sykes, R., & Blaxill, H. (2008). A New 3 Cylinder 1.2l Advanced Downsizing Technology Demonstrator Engine. SAE Technical Paper Series. doi:10.4271/2008-01-0611.

Dönitz, C., Vasile, I., Onder, C., & Guzzella, L. (2009). Realizing a concept for high efficiency and excellent driveability: The downsized and supercharged hybrid pneumatic engine. SAE Technical Papers. doi:10.4271/2009-01-1326.

Splitter, D. A., & Szybist, J. P. (2014). Experimental investigation of spark-ignited combustion with high-octane biofuels and EGR. 1. Engine load range and downsize downspeed opportunity. Energy and Fuels, 28(2), 1418–1431. doi:10.1021/ef401574p

Payri, F., Lopez, J. J., Pla, B., & Graciano Bustamante, D. (2014). Assessing the Limits of Downsizing in Diesel Engines. SAE Technical Paper Series. doi:10.4271/2014-32-0128.

Anbari Attar, M., Herfatmanesh, M. R., Zhao, H., & Cairns, A. (2014). Experimental investigation of direct injection charge cooling in optical GDI engine using tracer-based PLIF technique. Experimental Thermal and Fluid Science, 59, 96–108. doi:10.1016/j.expthermflusci.2014.07.020.

Turner, J. W. G., Popplewell, A., Patel, R., Johnson, T. R., Darnton, N. J., Richardson, S., Bredda, S. W., Tudor, R. J., Bithell, C. I., Jackson, R., Remmert, S. M., Cracknell, R. F., Fernandes, J. X., Lewis, A. G. J., Akehurst, S., Brace, C. J., Copeland, C., Martinez-Botas, R., Romagnoli, A., & Burluka, A. A. (2014). Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE International Journal of Engines, 7(1), 387–417. doi:10.4271/2014-01-1185.

Millo, F., Luisi, S., Borean, F., & Stroppiana, A. (2014). Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. Fuel, 121, 298–310. doi:10.1016/j.fuel.2013.12.047.

Severi, E., D’Adamo, A., Berni, F., Breda, S., Lugli, M., & Mattarelli, E. (2015). Numerical investigation on the effects of bore reduction in a high performance turbocharged GDI engine. 3D investigation of knock tendency. Energy Procedia, 81, 846–855. doi:10.1016/j.egypro.2015.12.094.

Kuleshov, A., Kuleshov, A., Mahkamov, K., Janhunen, T., & Akimov, V. (2015). New Downsized Diesel Engine Concept with HCCI Combustion at High Load Conditions. SAE Technical Paper Series. doi:10.4271/2015-01-1791.

Ma, J., & Zhao, H. (2015). The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine. SAE Technical Paper Series. doi:10.4271/2015-01-1970.

Wróblewski, E., Finke, S., & Babiak, M. (2017). Investigation of friction loss in internal combustion engine of experimental microgeometry piston bearing surface. Journal of KONES, 24(2), 307–313. doi:10.5604/01.3001.0010.2951.

Liu, J., Liu, Y., & Bolton, J. S. (2017). The Application of Acoustic Radiation Modes to Engine Oil Pan Design. SAE Technical Paper Series. doi:10.4271/2017-01-1844.

Marelli, S., Capobianco, M., & Zamboni, G. (2014). Pulsating flow performance of a turbocharger compressor for automotive application. International Journal of Heat and Fluid Flow, 45(1), 158–165. doi:10.1016/j.ijheatfluidflow.2013.11.001.

Sroka, Z. J., & Dziedzioch, D. (2015). Mechanical load of piston applied in downsized engine. Archives of Civil and Mechanical Engineering, 15(3), 663–667. doi:10.1016/j.acme.2014.12.004.

Biller, B. D., Wetzel, P., Chandras, P., & Keidel, S. (2015). Vehicle Level Parameter Sensitivity Studies for a 1.5L Diesel Engine Powered Passenger Car with Various Boosting Systems. SAE International Journal of Fuels and Lubricants, 8(2), 441–453. doi:10.4271/2015-01-0982.

Rastelli, R., Shutty, J., & Biller, B. (2015). A design methodology for combined turbo and supercharger applications. 15. Internationales Stuttgarter Symposium, 697–716. doi:10.1007/978-3-658-08844-6_47.

Yao, A., Xu, H., & Yao, C. (2015). Analysis of pressure waves in the cone-type combustion chamber under SI engine knock. Energy Conversion and Management, 96, 146–158. doi:10.1016/j.enconman.2015.02.057.

Bassett, M., Hall, J., Hibberd, B., Borman, S., Reader, S., Gray, K., & Richards, B. (2016). Heavily Downsized Gasoline Demonstrator. SAE International Journal of Engines, 9(2), 729–738. doi:10.4271/2016-01-0663.

Hibberd, B., Bassett, M., Hall, J., & Borman, S. (2016). Heavily downsized gasoline demonstrator. In Internationaler Motorenkongress 2016 (pp. 73–89). Springer Vieweg. doi:10.1007/978-3-658-12918-7_7.

Mattarelli, E., Rinaldini, C. A., & Agostinelli, E. (2016). Comparison of Supercharging Concepts for SI Engine Downsizing. SAE Technical Papers. doi:10.4271/2016-01-1032.

Streng, S., Wieske, P., Warth, M., & Hall, J. (2016). Monovalent Natural Gas Combustion and Downsizing for Lowest CO2 Emissions. MTZ Worldwide, 77(7–8), 16–23. doi:10.1007/s38313-016-0073-7.

Wu, H., Brunberg, J., Altimira, M., Bratt, N., Nyberg, H., Cronhjort, A., & Peciura, J. (2016). Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems. SAE International Journal of Passenger Cars - Mechanical Systems, 9(1), 310–320. doi:10.4271/2016-01-1368.

Matsumoto, K., Harada, H., Ono, Y., & Mihara, Y. (2016). In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment. SAE International Journal of Fuels and Lubricants, 9(2), 370–373. doi:10.4271/2016-01-0894.

Bassett, M., Hall, J., Cains, T., Underwood, M., & Wall, R. (2017). Dynamic Downsizing Gasoline Demonstrator. SAE International Journal of Engines, 10(3), 884–891. doi:10.4271/2017-01-0646.

Bassett, M., Hall, J., Cains, T., Borman, S., & Reader, S. (2017). Dynamic downsizing gasoline demonstrator. In Der Antrieb von morgen 2017 (pp. 247–262). Springer Vieweg. doi:10.1007/978-3-658-19224-2_15.

Xue, X., & Rutledge, J. (2017). Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing. SAE Technical Paper Series. doi:10.4271/2017-01-1035.

Wang, P., Zangeneh, M., Richards, B., Gray, K., Tran, J., & Andah, A. (2018). Redesign of a Compressor Stage for a High-Performance Electric Supercharger in a Heavily Downsized Engine. Journal of Engineering for Gas Turbines and Power, 140(4), 42602. doi:10.1115/1.4038021.

Hu, B., Akehurst, S., Lewis, A. G. J., Lu, P., Millwood, D., Copeland, C., Chappell, E., De Freitas, A., Shawe, J., & Burtt, D. (2018). Experimental analysis of the V-Charge variable drive supercharger system on a 1.0 L GTDI engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(4), 449–465. doi:10.1177/0954407017730464.

Willand, J., Daniel, M., Montefrancesco, E., Geringer, B., Hofmann, P., & Kieberger, M. (2009). Limits on downsizing in spark ignition engines due to pre-ignition. MTZ Worldwide, 70(5), 56–61. doi:10.1007/bf03226955.

Fontanesi, S., Severi, E., Siano, D., Bozza, F., & De Bellis, V. (2014). Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique. SAE International Journal of Engines, 7(1), 72–86. doi:10.4271/2014-01-1065.

Zaccardi, J. M., & Serrano, D. (2014). A Comparative Low Speed Pre-Ignition (LSPI) Study in Downsized SI Gasoline and CI Diesel-Methane Dual Fuel Engines. SAE International Journal of Engines, 7(4), 1931–1944. doi:10.4271/2014-01-2688.

Okada, Y., Miyashita, S., Izumi, Y., & Hayakawa, Y. (2014). Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine. SAE International Journal of Engines, 7(2), 584–594. doi:10.4271/2014-01-1218.

Welling, O., Collings, N., Williams, J., & Moss, J. (2014). Impact of Lubricant Composition on Low-speed Pre-Ignition. SAE Technical Paper Series. doi:10.4271/2014-01-1213.

Welling, O., Moss, J., Williams, J., & Collings, N. (2014). Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines. SAE International Journal of Fuels and Lubricants, 7(1), 1–8. doi:10.4271/2014-01-1219.

Wei, H., Shang, Y., Chen, C., Gao, D., & Feng, D. (2014). A numerical study on pressure wave-induced end gas auto-ignition near top dead center of a downsized spark ignition engine. International Journal of Hydrogen Energy, 39(36), 21265–21274. doi:10.1016/j.ijhydene.2014.10.008.

Robert, A., Richard, S., Colin, O., & Poinsot, T. (2015). LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combustion and Flame, 162(7), 2788–2807. doi:10.1016/j.combustflame.2015.04.010.

Wang, Z., Qi, Y., Liu, H., Long, Y., & Wang, J.-X. (2015). Experimental Study on Pre-Ignition and Super-Knock in Gasoline Engine Combustion with Carbon Particle at Elevated Temperatures and Pressures. SAE Technical Paper Series. doi:10.4271/2015-01-0752.

Luo, X., Teng, H., Hu, T., Miao, R., & Cao, L. (2015). An Experimental Investigation on Low Speed Pre-Ignition in a Highly Boosted Gasoline Direct Injection Engine. SAE International Journal of Engines, 8(2), 520–528. doi:10.4271/2015-01-0758.

Morikawa, K., Moriyoshi, Y., Kuboyama, T., Imai, Y., Yamada, T., & Hatamura, K. (2015). Investigation and Improvement of LSPI Phenomena and Study of Combustion Strategy in Highly Boosted SI Combustion in Low Speed Range. SAE Technical Paper Series. doi:10.4271/2015-01-0756.

Onodera, K., Kato, T., Ogano, S., Fujimoto, K., Kato, K., & Kaneko, T. (2015). Engine Oil Formulation Technology to Prevent Pre-ignition in Turbocharged Direct Injection Spark Ignition Engines. SAE Technical Paper Series. doi:10.4271/2015-01-2027.

Andrews, A., Burns, R., Dougherty, R., Deckman, D., & Patel, M. (2016). Investigation of Engine Oil Base Stock Effects on Low Speed Pre-Ignition in a Turbocharged Direct Injection SI Engine. SAE International Journal of Fuels and Lubricants, 9(2), 400–407. doi:10.4271/2016-01-9071.

Fan, C., Tong, S., Xu, X., Li, J., He, X. Y., Deng, J., & Li, L. (2016). Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere. SAE International Journal of Fuels and Lubricants, 9(2), 358–362. doi:10.4271/2016-01-0889.

Chen, Y., Li, L., Zhang, Q., Deng, J., Xie, W., Zhang, E., & Tong, S. (2017). Effects of Lubricant Additives on Auto-Ignition under a Hot Co-Flow Atmosphere. SAE Technical Paper Series. doi:10.4271/2017-01-2231.

Luisi, S., Doria, V., Stroppiana, A., Millo, F., & Mirzaeian, M. (2015). Experimental Investigation on Early and Late Intake Valve Closures for Knock Mitigation through Miller Cycle in a Downsized Turbocharged Engine. SAE Technical Paper Series. doi:10.4271/2015-01-0760.

Pan, J., Wei, H., Shu, G., Pan, M., Feng, D., & Li, N. (2017). LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Applied Energy, 191, 183–192. doi:10.1016/j.apenergy.2017.01.044.

Khosravi, M., Harihar, A., Pitsch, H., & Weber, C. (2017). Modeling and Numerical Investigation of Auto-Ignition and Megaknock in Boosted Gasoline Engines. SAE Technical Paper Series. doi:10.4271/2017-01-0519.

Chevillard, S., Colin, O., Bohbot, J., Wang, M., Pomraning, E., & Senecal, P. K. (2017). Advanced Methodology to Investigate Knock for Downsized Gasoline Direct Injection Engine Using 3D RANS Simulations. SAE Technical Paper Series. doi:10.4271/2017-01-0579.

Chen, Y., Wang, Y., & Raine, R. (2017). Correlation between cycle-by-cycle variation, burning rate, and knock: A statistical study from PFI and DISI engines. Fuel, 206, 210–218. doi:10.1016/j.fuel.2017.06.016.

Asif, M., Giles, K., Lewis, A., Akehurst, S., & Turner, N. (2017). Influence of Coolant Temperature and Flow Rate, and Air Flow on Knock Performance of a Downsized, Highly Boosted, Direct-Injection Spark Ignition Engine. SAE Technical Papers. doi:10.4271/2017-01-0664.

Szybist, J. P., Wagnon, S. W., Splitter, D., Pitz, W. J., & Mehl, M. (2017). The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines. SAE International Journal of Engines, 10(5), 2305–2318. doi:10.4271/2017-24-0061.

Vafamehr, H., Cairns, A., & Moslemin Koupaie, M. (2017). The Competing Chemical and Physical Effects of Transient Fuel Enrichment during Heavy Knock in an Optical SI Engine Using Ethanol Blends. SAE Technical Papers. doi:10.4271/2017-01-0665.

Haenel, P., Kleeberg, H., de Bruijn, R., & Tomazic, D. (2017). Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines. SAE International Journal of Fuels and Lubricants, 10(1), 95–105. doi:10.4271/2017-01-0687.

Wei, H., Shao, A., Hua, J., Zhou, L., & Feng, D. (2018). Effects of applying a Miller cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. Fuel, 214, 98–107. doi:10.1016/j.fuel.2017.11.006.

Wei, H., Chen, C., Shu, G., Liang, X., & Zhou, L. (2018). Pressure wave evolution during two hotspots autoignition within end-gas region under internal combustion engine-relevant conditions. Combustion and Flame, 189, 142–154. doi:10.1016/j.combustflame.2017.10.036.

Cairns, A., Blaxill, H., & Irlam, G. (2006). Exhaust gas recirculation for improved part and full load fuel economy in a turbocharged gasoline engine. SAE Technical Papers. doi:10.4271/2006-01-0047.

Galloni, E., Fontana, G., & Palmaccio, R. (2013). Effects of exhaust gas recycle in a downsized gasoline engine. Applied Energy, 105, 99–107. doi:10.1016/j.apenergy.2012.12.046.

Su, J., Xu, M., Li, T., Gao, Y., & Wang, J. (2014). Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 78, 65–73. doi:10.1016/j.enconman.2013.10.041.

Takaki, D., Tsuchida, H., Kobara, T., Akagi, M., Tsuyuki, T., & Nagamine, M. (2014). Study of an egr system for downsizing turbocharged gasoline engine to improve fuel economy. SAE Technical Papers. doi:10.4271/2014-01-1199.

Teodosio, L., de Bellis, V., & Bozza, F. (2015). Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System. SAE International Journal of Engines, 8(4), 1508–1519. doi:10.4271/2015-01-1244.

Luján, J. M., Climent, H., Novella, R., & Rivas-Perea, M. E. (2015). Influence of a low pressure EGR loop on a gasoline turbocharged direct injection engine. Applied Thermal Engineering, 89, 432–443. doi:10.1016/j.applthermaleng.2015.06.039.

Li, T., Yin, T., & Wang, B. (2017). Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines. Applied Energy, 190, 43–56. doi:10.1016/j.apenergy.2016.12.105.

Bozza, F., De Bellis, V., & Teodosio, L. (2016). Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Applied Energy, 169, 112–125. doi:10.1016/j.apenergy.2016.01.129.

Shen, K., Li, F., Zhang, Z., Sun, Y., & Yin, C. (2017). Effects of LP and HP cooled EGR on performance and emissions in turbocharged GDI engine. Applied Thermal Engineering, 125, 746–755. doi:10.1016/j.applthermaleng.2017.07.064.

Chao, Y., Lu, H., Hu, Z., Deng, J., Wu, Z., Li, L., Shen, Y., & Yuan, S. (2017). Comparison of Fuel Economy Improvement by High and Low Pressure EGR System on a Downsized Boosted Gasoline Engine. SAE Technical Papers. doi:10.4271/2017-01-0682.

Jadhav, P. D., & Mallikarjuna, J. M. (2017). Effect of EGR on Performance and Emission Characteristics of a GDI Engine - A CFD Study. SAE Technical Papers. doi:10.4271/2017-24-0033.

Remmert, S. M., Cracknell, R. F., Head, R., Schuetze, A., Lewis, A. G. J., Akehurst, S., Turner, J. W. G., & Popplewell, A. (2014). Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine. SAE International Journal of Fuels and Lubricants, 7(1), 131–143. doi:10.4271/2014-01-1397.

Jo, Y. S., Bromberg, L., & Heywood, J. (2016). Octane Requirement of a Turbocharged Spark Ignition Engine in Various Driving Cycles. SAE Technical Papers. doi:10.4271/2016-01-0831.

Kramer, U., Lorenz, T., Hofmann, C., Ruhland, H., Klein, R., & Weber, C. (2017). Methane Number Effect on the Efficiency of a Downsized, Dedicated, High Performance Compressed Natural Gas (CNG) Direct Injection Engine. SAE Technical Papers. doi:10.4271/2017-01-0776.

Sroka, Z. J. (2014). Impact of downsizing technology on operating indicators for combustion engine fed with gaseous fuel with low methane content. Polish Journal of Environmental Studies, 23(4), 1413–1416.

Kuti, O. A., Yang, S. Y., Hourani, N., Naser, N., Roberts, W. L., Chung, S. H., & Sarathy, S. M. (2015). A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. Fuel, 160, 605–613. doi:10.1016/j.fuel.2015.08.026.

D’Adamo, A., Berni, F., Breda, S., Lugli, M., Fontanesi, S., & Cantore, G. (2015). A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines. SAE Technical Papers. doi:10.4271/2015-01-0393.

Berni, F., Breda, S., D’Adamo, A., Fontanesi, S., & Cantore, G. (2015). Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine. SAE Technical Papers. doi:10.4271/2015-24-2499.

De Bellis, V., Bozza, F., Teodosio, L., & Valentino, G. (2017). Experimental and numerical study of the water injection to improve the fuel economy of a small size turbocharged SI engine. SAE International Journal of Engines, 10(2), 550–561. doi:10.4271/2017-01-0540.

Worm, J., Naber, J., Duncan, J., Barros, S., & Atkinson, W. (2017). Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine. SAE International Journal of Engines, 10(3), 951–958. doi:10.4271/2017-01-0663.

Tornatore, C., Siano, D., Marchitto, L., Iacobacci, A., Valentino, G., & Bozza, F. (2017). Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines. SAE International Journal of Engines, 10(5), 2319–2329. doi:10.4271/2017-24-0062.

Baêta, J. G. C., Pontoppidan, M., & Silva, T. R. V. (2015). Exploring the limits of a down-sized ethanol direct injection spark ignited engine in different configurations in order to replace high-displacement gasoline engines. Energy Conversion and Management, 105, 858–871. doi:10.1016/j.enconman.2015.08.041.

Cho, J., Si, W., Jang, W., Jin, D., Myung, C. L., & Park, S. (2015). Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine. Applied Energy, 160, 592–602. doi:10.1016/j.apenergy.2015.08.010.

Jo, Y. S., Bromberg, L., & Heywood, J. (2016). Optimal Use of Ethanol in Dual Fuel Applications: Effects of Engine Downsizing, Spark Retard, and Compression Ratio on Fuel Economy. SAE International Journal of Engines, 9(2), 1087–1101. doi:10.4271/2016-01-0786.

Moslemin Koupaie, M., Cairns, A., Vafamehr, H., & Lanzanova, T. (2017). Cyclically Resolved Flame and Flow Imaging in an SI Engine Operating with Future Ethanol Fuels. SAE Technical Papers. doi:10.4271/2017-01-0655.

Martins, F. P., Boggio, S. D. M., Lacava, P. T., De Andrade, C. R., Penaranda, A., Silva, M. F., & Sbampato, M. E. (2017). A Study about Imaging Post Processing in Flame Front Detection in an Optical Research Engine Operating with Anhydrous Ethanol. SAE Technical Papers. doi:10.4271/2017-36-0388.

Scala, F., Galloni, E., & Fontana, G. (2016). Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation. Applied Thermal Engineering, 102, 383–390. doi:10.1016/j.applthermaleng.2016.03.137.

Galloni, E., Fontana, G., Staccone, S., & Scala, F. (2016). Performance analyses of a spark-ignition engine firing with gasoline-butanol blends at partial load operation. Energy Conversion and Management, 110, 319–326. doi:10.1016/j.enconman.2015.12.038.

Lattimore, T., Herreros, J. M., Xu, H., & Shuai, S. (2016). Investigation of compression ratio and fuel effect on combustion and PM emissions in a DISI engine. Fuel, 169, 68–78. doi:10.1016/j.fuel.2015.10.044.

Scala, F., Galloni, E., & Fontana, G. (2017). Numerical Analysis of a Spark-Ignition Engine Fueled by Ethanol-Gasoline and Butanol-Gasoline Blends: Setting the Optimum Spark Advance. SAE Technical Papers. doi:10.4271/2017-24-0117.

Tan, X., & Azimov, U. (2017). Diesel engine downsizing with application of biofuels. International Journal of Energy and Environment, 8(5), 413-426.

Su, J., Lin, W., Sterniak, J., Xu, M., & Bohac, S. V. (2014). Particulate Matter Emission Comparison of Spark Ignition Direct Injection (SIDI) and Port Fuel Injection (PFI) Operation of a Boosted Gasoline Engine. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027274.

Hoffmann, G., Befrui, B., Berndorfer, A., Piock, W. F., & Varble, D. L. (2014). Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems. SAE International Journal of Engines, 7(1), 519–527. doi:10.4271/2014-01-1209.

Su, J., Xu, M., Yin, P., Gao, Y., & Hung, D. (2014). Particle Number Emissions Reduction Using Multiple Injection Strategies in a Boosted Spark-Ignition Direct-Injection (SIDI) Gasoline Engine. SAE International Journal of Engines, 8(1), 20–29. doi:10.4271/2014-01-2845.

Xu, Z., Zhou, Z., Wu, T., Li, T., Cheng, C., & Yin, H. (2016). Investigations of Smoke Emission, Fuel Dilution and Pre-Ignition in a 2.0L Turbo-Charged GDI Engine. SAE Technical Papers. doi:10.4271/2016-01-0698.

Dalla Nora, M., Lanzanova, T., Zhang, Y., & Zhao, H. (2016). Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine. SAE Technical Papers. doi:10.4271/2016-01-0674.

Li, T., Zheng, B., & Yin, T. (2015). Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle. Energy Conversion and Management, 103, 448–458. doi:10.1016/j.enconman.2015.06.078.

Li, T., Wang, B., & Zheng, B. (2016). A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management, 123, 140–152. doi:10.1016/j.enconman.2016.06.038.

Li, T., Gao, Y., Wang, J., & Chen, Z. (2014). The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. Energy Conversion and Management, 79, 59–65. doi:10.1016/j.enconman.2013.12.022.

Gheorghiu, V., (2011). Ultra-Downsizing of Internal Combustion Engines: Simultaneous Increasing of Thermal Conversion Efficiency and Power while reducing emissions. 16th Asia Pacific Automotive Engineering Conference. doi:10.4271/2011-28-0049.

Sroka, Z. J. (2012). Some aspects of thermal load and operating indexes after downsizing for internal combustion engine. Journal of Thermal Analysis and Calorimetry, 110(1), 51–58. doi:10.1007/s10973-011-2064-x.

Alix, G., Dabadie, J.-C., & Font, G. (2015). An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption. SAE Technical Paper Series. doi:10.4271/2015-24-2385.

Leach, F., Stone, R., Richardson, D., Lewis, A., Akehurst, S., Turner, J., Remmert, S., Campbell, S., & Cracknell, R. F. (2018). Particulate emissions from a highly boosted gasoline direct injection engine. International Journal of Engine Research, 19(3), 347–359. doi:10.1177/1468087417710583.

Mutzke, J., Scott, B., Stone, R., & Williams, J. (2016). The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines. SAE Technical Paper Series. doi:10.4271/2016-01-0700.

Leguille, M., Ravet, F., Le Moine, J., Pomraning, E., Richards, K., & Senecal, P. K. (2017). Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine. SAE Technical Paper Series. doi:10.4271/2017-01-0669.

Jatana, G. S., & Kaul, B. C. (2017). Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation. SAE International Journal of Engines, 10(3), 1011–1018. doi:10.4271/2017-01-0681.

Tong, S., Li, H., Yang, Z., Deng, J., Hu, Z., & Li, L. (2015). Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine. SAE Technical Paper Series. doi:10.4271/2015-01-0881.

Teodosio, L., De Bellis, V., Bozza, F., & Tufano, D. (2017). Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine. SAE Technical Paper Series. doi:10.4271/2017-24-0015.

Zhao, D., Winward, E., Yang, Z., Stobart, R., Mason, B., & Steffen, T. (2018). An Integrated Framework on Characterization, Control, and Testing of an Electrical Turbocharger Assist. IEEE Transactions on Industrial Electronics, 65(6), 4897–4908. doi:10.1109/TIE.2017.2774726.

Bonatesta, F., Altamore, G., Kalsi, J., & Cary, M. (2016). Fuel economy analysis of part-load variable camshaft timing strategies in two modern small-capacity spark ignition engines. Applied Energy, 164, 475–491. doi:10.1016/j.apenergy.2015.11.057.

De Bellis, V. (2016). Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation. Applied Energy, 164, 162–174. doi:10.1016/j.apenergy.2015.11.097.

Li, H., Wang, K., Wang, L., Li, Y., & Fan, J. (2017). Effect of Geometric Structure of Cylinder Head on the Combustion Process in a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2017-01-0692.

Millo, F., Mirzaeian, M., Luisi, S., Doria, V., & Stroppiana, A. (2016). Engine displacement modularity for enhancing automotive s.i. engines efficiency at part load. Fuel, 180, 645–652. doi:10.1016/j.fuel.2016.04.049.

Dulbecco, A., Richard, S., & Angelberger, C. (2015). Investigation on the Potential of Quantitatively Predicting CCV in DI-SI Engines by Using a One-Dimensional CFD Physical Modeling Approach: Focus on Charge Dilution and In-Cylinder Aerodynamics Intensity. SAE International Journal of Engines, 8(5), 2012–2028. doi:10.4271/2015-24-2401.

Full Text: PDF

DOI: 10.28991/HIJ-2021-02-04-010


  • There are currently no refbacks.

Copyright (c) 2021 Mohammad Mostafa Namar, Omid Jahanian