Optimization of Fuzzy Support Vector Machine (FSVM) Performance by Distance-Based Similarity Measure Classification
Abstract
Doi: 10.28991/HIJ-2021-02-04-02
Full Text: PDF
Keywords
References
Silva, I., & Naranjo, J. E. (2020). A systematic methodology to evaluate prediction models for driving style classification. Sensors (Switzerland), 20(6), 1–21. doi:10.3390/s20061692.
Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis. Procedia Computer Science, 83(Fams), 1064–1069. doi:10.1016/j.procs.2016.04.224.
Fauzi, F. (2017). K-Nearset Neighbor (K-NN) dan Support Vector Machine (SVM) untuk Klasifikasi Indeks Pembangunan Manusia Provinsi Jawa Tengah. Jurnal Mipa, 40(2), 118–124.
Han, K. X., Chien, W., Chiu, C. C., & Cheng, Y. T. (2020). Application of support vector machine (SVM) in the sentiment analysis of twitter dataset. Applied Sciences (Switzerland), 10(3). doi:10.3390/app10031125.
Lin, Y., Yu, H., Wan, F., & Xu, T. (2017). Research on Classification of Chinese Text Data Based on SVM. IOP Conference Series: Materials Science and Engineering, 231(1), 0–5. doi:10.1088/1757-899X/231/1/012067.
Widiastuti, N. I., Rainarli, E., & Dewi, K. E. (2017). Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen. Jurnal Infotel, 9(4), 416. doi:10.20895/infotel.v9i4.312.
Pavithra, S., & Janakiraman, S. (2020). Enhanced polynomial kernel (EPK)–based support vector machine (SVM) (EPK-SVM) classification technique for speech recognition in hearing-impaired listeners. Concurrency and Computation: Practice and Experience, 1–12,. doi:10.1002/cpe.5210.
Orlando, G., Raimondi, D., Khan, T., Lenaerts, T., & Vranken, W. F. (2017). SVM-dependent pairwise HMM: An application to protein pairwise alignments. Bioinformatics, 33(24), 3902–3908. doi:10.1093/bioinformatics/btx391.
Sohail, A., & Arif, F. (2020). Supervised and unsupervised algorithms for bioinformatics and data science. Progress in Biophysics and Molecular Biology, 151, 14–22. doi:10.1016/j.pbiomolbio.2019.11.012.
Lin, X., Li, C., Zhang, Y., Su, B., Fan, M., & Wei, H. (2018). Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics. Molecules, 23(1). doi:10.3390/molecules23010052.
Akbani, R., & Korkmaz, T. (2010). Applications of Support Vector Machines in Bioinformatics and Network Security. Application of Machine Learning, February. doi:10.5772/8618.
Vanpik, V., & Cortes, C. (1995). Support Vector Network. Mach. Learn, 20, 273–297. doi:10.1007/BF00994018.
Pushpita Anna Octaviani, Yuciana Wilandari, D. I. (2014). Penerapan Metode SVM Pada Data Akreditasi Sekolah Dasar Di Kabupaten Magelang. Jurnal Gaussian, 3(8), 811–820.
Brereton, R. G., & Lloyd, G. R. (2010). Support Vector Machines for classification and regression. Analyst, 135(2), 230–267. doi:10.1039/b918972f.
Wu, Q., & Wang, W. (2013). Piecewise-smooth support vector machine for classification. Mathematical Problems in Engineering, 2013. doi:10.1155/2013/135149.
Lin, C. F., & Wang, S. De. (2002). Fuzzy support vector machines. IEEE Transactions on Neural Networks, 13(2), 464–471. doi:10.1109/72.991432.
An, W., & Liang, M. (2013). Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neurocomputing, 110, 101–110. doi:10.1016/j.neucom.2012.11.023.
Guernine, T., & Zeroual, K. (2011). New fuzzy multi-class method to train SVM classifier. 3rd International Conference on Advances in Databases, Knowledge, and Data Applications, Netherlands Antilles, 77–82.
Castro, J. L., Flores-Hidalgo, L. D., Mantas, C. J., & Puche, J. M. (2007). Extraction of fuzzy rules from support vector machines. Fuzzy Sets and Systems, 158(18), 2057–2077. doi:10.1016/j.fss.2007.04.014.
Wu, K., Zhou, M., Sean Lu, X., & Huang, L. (2017). Fuzzy logic-based text classification method for social media data. 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, January, Banff, Canada, 1942–1947. doi:10.1109/SMC.2017.8122902.
Sridevi, P. (2019). Identification of suitable membership and kernel function for FCM based FSVM classifier model. Cluster Computing, 22, 11965–11974. doi:10.1007/s10586-017-1533-9.
Gupta, D., Richhariya, B., & Borah, P. (2019). A fuzzy twin support vector machine based on information entropy for class imbalance learning. Neural Computing and Applications, 31(11), 7153–7164. doi:10.1007/s00521-018-3551-9.
Ding, X. K., Yang, X. J., Jiang, J. Y., Deng, X. L., Cai, J. C., & Ji, Y. Y. (2018). Optimization and analysis on fuzzy SVM for objects classification. Journal of Information Hiding and Multimedia Signal Processing, 9(6), 1421–1429.
Wang, R., Zhang, X., & Cao, W. (2016). Clifford Fuzzy Support Vector Machines for Classification. Advances in Applied Clifford Algebras, 26(2), 825–846. doi:10.1007/s00006-015-0616-z.
Xiaokang, D., Lei, Y., Jianping, Y., & Zhaozhong, Z. (2016). Optimization and Analysis on Fuzzy SVM for Targets Classification in Forest. The Open Cybernetics & Systemics Journal, 10(1), 155–162. doi:10.2174/1874110x01610010155.
Jiang, X., Yi, Z., & Lv, J. C. (2006). Fuzzy SVM with a new fuzzy membership function. Neural Computing and Applications, 15(3–4), 268–276. doi:10.1007/s00521-006-0028-z.
Al-Mumtazah, N. S., & Surono, S. (2020). Quadratic Form Optimization with Fuzzy Number Parameters: Multiobjective Approaches. International Journal of Fuzzy Systems, 22(4), 1191–1197. doi:10.1007/s40815-020-00808-x.
Liu, W., Ci, L. L., & Liu, L. P. (2020). A new method of fuzzy support vector machine algorithm for intrusion detection. Applied Sciences (Switzerland), 10(3). doi:10.3390/app10031065.
Mohammed, N. N., & Abdulazeez, A. M. (2018). Evaluation of partitioning around medoids algorithm with various distances on microarray data. Proceedings - 2017 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, IEEE Smart Data, IThings-GreenCom-CPSCom-SmartData 2017, January, 1011–1016. doi:10.1109/iThings-GreenCom-CPSCom-SmartData.2017.155.
Syaripudin, U., Badruzaman, I., Yani, E., K, D., & Ramdhani, M. (2013). Studi Komparatif Penerapan Metode Hierarchical, K-Means Dan Self Organizing Maps (SOM) Clustering Pada Basis Data. Istek, VII(1), 132–149.
DOI: 10.28991/HIJ-2021-02-04-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Sugiyarto Surono, Tia Nursofiyani, Annisa Eka Haryati