Microbiological Antibiotic Assay Validation of Gentamicin Sulfate Using Two-Dose Parallel Line Model (PLM)

Mostafa Essam Eissa, Engy Refaat Rashed, Dalia Essam Eissa

Abstract


Till nowadays microbiological assay is still widely used with several antibiotics that are composed of a mixture of related active compounds. However, obtaining a reasonably valid determination of the potency is dependent on the validity and the suitability of the assay design. The present work aimed to validate an assay design of an aminoglycoside antibiotic (Gentamicin Sulfate) using a two-dose Parallel Line Model agar diffusion assay in a large 8×8 rectangular plate. All preparatory procedures were done following United States Pharmacopeia and the Inhibition Zones were measured using a digital caliper to the nearest 0.01 mm. Analysis of variance of compendial requirements of regression and parallelism were found to be satisfactorily meeting the acceptance criteria. Specificity was achieved for the product under investigation with no detectable IZ that could be found for all components except the antibiotic. The validation method showed acceptable linearity of r2≥0.98. Accuracy and precision parameters showed RSD (%)<2. All relative error value estimates were below 4%. The proposed validation design for 32×32 cm antibiotic plates yielded valid results and can be projected for the routine Quality Control analysis of the antibiotic material, especially which is incorporated into a finished medicinal dosage form.

 

Doi: 10.28991/HIJ-2021-02-04-04

Full Text: PDF


Keywords


Gentamicin Sulfate; PLM; Regression; Parallelism; Linearity; Precision; Ruggedness; Agar Diffusion; Inhibition Zone.

References


Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. doi:10.1179/2047773215Y.0000000030.

World Health Organization (W.H.O.) (2007). Quality Assurance of Pharmaceuticals.

Gentamicin Sulfate. (2021). In ASHP® Injectable Drug Information TM (pp. 766–779). doi:10.37573/9781585286850.186.

Pauter, K., Szultka-Młýnska, M., & Buszewski, B. (2020). Determination and identification of antibiotic drugs and bacterial strains in biological samples. Molecules, 25(11), 2556. doi:10.3390/molecules25112556.

Bekele, L. K., & Gebeyehu, G. G. (2012). Application of Different Analytical Techniques and Microbiological Assays for the Analysis of Macrolide Antibiotics from Pharmaceutical Dosage Forms and Biological Matrices. In ISRN Analytical Chemistry (Vol. 2012, pp. 1–17). doi:10.5402/2012/859473.

European Treaty Series. European Pharmacopoeia (50th ed.). (2016). Council of Europe.

Oppe, T. P., Menegola, J., & Schapoval, E. E. S. (2018). Microbiological Assay for the Determination of Cefpirome in Raw Material and Injectable Preparation. Drug Analytical Research, 2(1), 29–35. doi:10.22456/2527-2616.84473.

Chen, J., San, S. S. S., Kung, A., Tomasek, M., Liu, D., Rodgers, W., & Gau, V. (2021). Direct-from-specimen microbial growth inhibition spectrums under antibiotic exposure and comparison to conventional antimicrobial susceptibility testing. In bioRxiv.

Salgado, H. R. N., & Tozo, G. C. G. (2007). Microbiological assay for cefoxitin sodium in dosage form. Journal of AOAC International, 90(2), 452–455. doi:10.1093/jaoac/90.2.452.

Zar, J. (2009). Biostatistical Analysis; 5th ed.; Prentice-Hall: New Jersey, USA.

Greenwood, M.; Banner, K. One-Way ANOVA Sums of Squares, Mean Squares, and F-test - Mark Greenwood and Katharine Banner. Available online: https://arc.lib.montana.edu/book/statistics-with-r-textbook/item/56 (accessed on October 2021).

Abonazel, M. R. (2017). Using Completely Randomized Design of Parallel Linear Model for Estimating the Biological Potency of Human Insulin Drugs: An Empirical Study. Biostatistics and Biometrics Open Access Journal, 3(4), 3. doi:10.19080/bboaj.2017.03.555619.

Thai Pharmacopoeia (2008). 5.3. Statistical Analysis of Results of Biological Assays and Tests. In European Pharmacopoeia 10 (Issue 1, pp. 571–600). Available online: https://www.bdn.go.th/tp/ebook/qQWcZ3tlpR9gC3q0GT5gMJq0qT5co3uw (accessed on August 2021).

Zuluaga, A. F., Agudelo, M., Rodriguez, C. A., & Vesga, O. (2009). Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics. BMC Clinical Pharmacology, 9, 9. doi:10.1186/1472-6904-9-1.

Manfio, M. L., Agarrayua, D. A., Machado, J. C., & Schmidt, C. A. (2013). A fully validated microbiological assay to evaluate the potency of ceftriaxone sodium. Brazilian Journal of Pharmaceutical Sciences, 49(4), 753–762. doi:10.1590/S1984-82502013000400015.

USP. (2018). The United States pharmacopoeia. The National formulary. Vol. 4 (43rd-NF38 ed., Vol. 5). United States Pharmacopeial Convention.

Eissa, M., R. Rashed, E., & Eissa, D. (2021). Validation of Symmetrical Two-Dose Parallel Line Assay Model for Nystatin Potency Determination in Pharmaceutical Product. Journal of Advanced Pharmacy Research, 5(6), 406-413. doi:10.21608/aprh.2021.86555.1138.

Gad, S. (2008). Pharmaceutical Manufacturing Handbook. Wiley-Interscience. doi:10.1002/9780470259832.

Lourenço, F. R., Kaneko, T. M., & De Jesus Andreoli Pinto, T. (2007). Validation of erythromycin microbiological assay using an alternative experimental design. Journal of AOAC International, 90(4), 1107–1110. doi:10.1093/jaoac/90.4.1107.

European Medicines Agency (EMEA). (1994). ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5. Note for guidance on validation of analytical procedures: Text and methodology (CPMP/ICH/381/95). In Prescrire International (pp. 1–15). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on October 2021).

Q2B Validation of Analytical Procedures: Methodology. Guidance for Industry; U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. (1996).

Caulcutt, R., Boddy, R. (1995). Statistics for Analytical Chemists; Chapman & Hall: London, UK.

Beiguelman, B. (2002). Curso Prático De Bioestatística. In Fundação de Pesquisas Científicas de Ribeirão Preto: Ribeirão Preto (5th ed., pp. 1–35, 117–263).

Lourenço, F. R., & Pinto, T. D. J. A. (2009). Comparison of three experimental designs employed in gentamicin microbiological assay through agar diffusion. Brazilian Journal of Pharmaceutical Sciences, 45(3), 559–566. doi:10.1590/S1984-82502009000300022.

Mandle, R. Assay Validation Methods - Definitions and Terms. In BioSciences Research Associates (Issue 3). Available online: https://www.fws.gov/aah/PDF/QI-Terms and Defs.pdf (accessed on October 2021).

Christ, A. P., Machado, M. S., Ribas, K. G., Schwarzbold, A. V., da Silva, C. de B., & Adams, A. I. H. (2015). A fully validated microbiological assay for daptomycin injection and comparison to HPLC method. Brazilian Journal of Pharmaceutical Sciences, 51(4), 775–783. doi:10.1590/S1984-82502015000400003.

Ermer, J., & McB. Miller, J. H. (Eds.). (2005). Method Validation in Pharmaceutical Analysis. doi:10.1002/3527604685.

Dafale, N. A., Semwal, U. P., Agarwal, P. K., Sharma, P., & Singh, G. N. (2015). Development and validation of microbial bioassay for quantification of Levofloxacin in pharmaceutical preparations. Journal of Pharmaceutical Analysis, 5(1), 18–26. doi:10.1016/j.jpha.2014.07.007.

Abd Elhafeez, M., & Mobarez, E. (2021). Evaluation of analytical method for determination of tetracyclines in their dosage forms by HPLC using different types of chromatographic stationary phases (RP-C8 and RP-C18). Egyptian Journal of Animal Health, 1(2), 1–10. doi:10.21608/ejah.2021.160749.

Dafale, N. A., Semwal, U. P., Rajput, R. K., & Singh, G. N. (2016). Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. Journal of Pharmaceutical Analysis, 6(4), 207–213. doi:10.1016/j.jpha.2016.05.006.

Belouafa, S., Habti, F., Benhar, S., Belafkih, B., Tayane, S., Hamdouch, S., Bennamara, A., & Abourriche, A. (2017). Statistical tools and approaches to validate analytical methods: Methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. doi:10.1051/ijmqe/2016030.

Pharmaceutical and Medical Device Regulatory Science Society of Japan. Japanese Pharmaco-Poeia (7th ed.). (2016). Japan.

Deng, Z., Yu, Y., & Zhang, Q. (2017). Parallel pathways in the biosynthesis of aminoglycoside antibiotics. F1000Research, 6, 723. doi:10.12688/f1000research.11104.1.

Dewick, P. (2012). Medicinal Natural Products; Wiley & Sons: Chichester, UK.

Kumar, C. G., Himabindu, M., & Jetty, A. (2008). Microbial biosynthesis and applications of gentamicin: A critical appraisal. Critical Reviews in Biotechnology, 28(3), 173–212. doi:10.1080/07388550802262197.

Weinstein, M. J., Wagman, G. H., Oden, E. M., & Marquez, J. A. (1967). Biological activity of the antibiotic components of the gentamicin complex. Journal of Bacteriology, 94(3), 789–790. doi:10.1128/jb.94.3.789-790.1967.

Vydrin, A. F., Shikhaleev, I. V., Makhortov, V. L., Shcherenko, N. N., & Kolchanova, N. V. (2003). Component composition of gentamicin sulfate preparations. Pharmaceutical Chemistry Journal, 37(8), 448-450. doi:10.1023/A:1027372416983.

Daniels, P. J. L., Luce, C., Jaret, R. S., Schumacher, D., Reimann, H., & Ilavsky, J. (1975). The gentamicin antibiotics. VI. Gentamicin C2b, an aminoglycoside antibiotic produced by micromonospora purpurea mutant JI-33. The Journal of Antibiotics, 28(1), 35–41. doi:10.7164/antibiotics.28.35.

Solanot, A. G. R., Pereira, L. de M. C. S., Leonel, M. de F. V., & Nunan, E. de A. (2011). Development of agar diffusion method for dosage of gramicidin. Brazilian Journal of Pharmaceutical Sciences, 47(3), 565–572. doi:10.1590/s1984-82502011000300014.

Nahar, S., Khatun, M. S., & Kabir, M. S. (2020). Application of microbiological assay to determine the potency of intravenous antibiotics. Stamford Journal of Microbiology, 10(1), 25–29. doi:10.3329/sjm.v10i1.50729.

AOAC International. Appendix F.: Guidelines for Standard Method Performance Requirements. In AOAC Official Methods of Analysis. Available online: http://www.eoma.aoac.org/app_f.pdf (accessed on August 2021).

Latimer, G. (2019). Official Methods of Analysis of AOAC International; 21st ed.; AOAC International: Gaithersburg, Md., Maryland, USA.

Kavanagh, F. (1977). Microbiological turbidimetric methods: Linearization of antibiotic and vitamin standard curves. Journal of Pharmaceutical Sciences, 66(11), 1520–1525. doi:10.1002/jps.2600661104.

Feng, C., Wang, H., Lu, N., & Tu, X. M. (2013). Log transformation: Application and interpretation in biomedical research. Statistics in Medicine, 32(2), 230–239. doi:10.1002/sim.5486.

Kragujevac, U., Heidelberg, S., & Springer, H. (2011). International Encyclopedia of Statistical Science. In International Encyclopedia of Statistical Science. doi:10.1007/978-3-642-04898-2.

Akers, M. D. (2018). Exploring, Analysing and Interpreting Data with Minitab 18. Compass Publishing.

Rao, T. Validation of Analytical Methods. Available online: https://www.intechopen.com/chapters/57909 (accessed October 2021).

Costa, M. C. N., Barden, A. T., Andrade, J. M. M., Oppe, T. P., & Schapoval, E. E. S. (2014). Quantitative evaluation of besifloxacin ophthalmic suspension by HPLC, application to bioassay method and cytotoxicity studies. Talanta, 119, 367–374. doi:10.1016/j.talanta.2013.10.051.

Hubert, P., Nguyen-Huu, J.-J., Boulanger, B., Chapuzet, E., Cohen, N., Compagnon, P.-A., … Rozet, E. (2008). Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal. Journal of Pharmaceutical and Biomedical Analysis, 48(3), 760–771. doi:10.1016/j.jpba.2008.07.018.

Rozet, E., Hubert, C., Ceccato, A., Dewé, W., Ziemons, E., Moonen, F., Michail, K., Wintersteiger, R., Streel, B., Boulanger, B., & Hubert, P. (2007). Using tolerance intervals in pre-study validation of analytical methods to predict in-study results. The fit-for-future-purpose concept. Journal of Chromatography A, 1158(1–2), 126–137. doi:10.1016/j.chroma.2007.03.102.

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). (2018). Guidance for Industry; U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Rockville, MD, USA.

Rozet, E., Ceccato, A., Hubert, C., Ziemons, E., Oprean, R., Rudaz, S., Boulanger, B., & Hubert, P. (2007). Analysis of recent pharmaceutical regulatory documents on analytical method validation. Journal of Chromatography A, 1158(1–2), 111–125. doi:10.1016/j.chroma.2007.03.111.

Cazedey, E. C. L., & Salgado, H. R. N. (2011). Development and validation of a microbiological agar assay for determination of orbifloxacin in pharmaceutical preparations. Pharmaceutics, 3(3), 572–581. doi:10.3390/pharmaceutics3030572.

Hewitt, W. (2003). Microbiological Assay for Pharmaceutical Analysis. In Microbiological Assay for Pharmaceutical Analysis. doi:10.1201/b12428.


Full Text: PDF

DOI: 10.28991/HIJ-2021-02-04-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Mostafa Eissa