Towards the Internet of Behaviors in Smart Cities through a Fog-To-Cloud Approach

Antonio Salis


Recent advances in Internet of Things (IoT) and the rising of the Internet of Behavior (IoB) have made it possible to develop real-time improved traveler assistance tools for mobile phones, assisted by cloud-based machine learning, and using fog computing in between IoT and the Cloud. Within the Horizon2020-funded mF2C project an Android app has been developed exploiting the proximity marketing concept and covers the essential path through the airport onto the flight, from the least busy security queue through to the time to walk to gate, gate changes, and other obstacles that airports tend to entertain travelers with. It gives chance to travelers to discover the facilities of the airport, aided by a recommender system using machine learning, that can make recommendations and offer voucher according with the traveler’s preferences or on similarities to other travelers. The system provides obvious benefits to the airport planners,  not only people tracking in the shops area, but also aggregated and anonymized view, like heat maps that can highlight bottlenecks in the infrastructure, or suggest situations that require intervention, such as emergencies. With the emerging of the COVID pandemic the tool could be adapted to help in the social distancing to guarantee safety. The use of the fog-to-cloud platform and the fulfilling of all centricity and privacy requirements of the IoB give evidence of the impact of the solution.


Doi: 10.28991/HIJ-2021-02-04-01

Full Text: PDF


IOT; IOB; Smart Cities; Cloud Computing; Fog Computing; Fog-To-Cloud Orchestration; Machine Learning; Proximity Marketing.


Buyya, R., & Srirama, S. N. (2019). Fog and edge computing: Principles and paradigms. Fog and Edge Computing: Principles and Paradigms, 1–471.

Sinaeepourfard, A., García Almiñana, J., Masip Bruin, X., & Marín Tordera, E. (2017). Fog-to-Cloud (F2C) data management for smart cities. In Proceedings of 2017 Future Technologies Conference (FTC): 29-30 November 2017, Vancouver, Canada (pp. 162-172). The Science and Information (SAI) Organization.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing - MCC ’12. doi:10.1145/2342509.2342513.

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2016). Challenges and Opportunities in Edge Computing. 2016 IEEE International Conference on Smart Cloud (SmartCloud). doi:10.1109/smartcloud.2016.18.

Masip-Bruin, X., Leckey, A., Salis, A., Guilhot, D., Cankar, M., Marín-Tordera, E., … Cordeiro, C. (2018). mF2C. Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects - SMARTOBJECTS ’18. doi:10.1145/3213299.3213307.

Villari, M., Fazio, M., Dustdar, S., Rana, O., & Ranjan, R. (2016). Osmotic Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud Computing, 3(6), 76–83. doi:10.1109/mcc.2016.124.

Masip‐bruin, X., Marín‐tordera, E., Sánchez‐lópez, S., Garcia, J., Jukan, A., Ferrer, A. J., Queralt, A., Salis, A., Bartoli, A., Cankar, M., Cordeiro, C., Jensen, J., & Kennedy, J. (2021). Managing the cloud continuum: Lessons learnt from a real fog‐to‐cloud deployment. Sensors, 21(9).

Lordan, F., Lezzi, D., Ejarque, J., & Badia, R. M. (2018). An Architecture for Programming Distributed Applications on Fog to Cloud Systems. Lecture Notes in Computer Science, 325–337. doi:10.1007/978-3-319-75178-8_27.

Salis, A., & Mancini, G. (2018). Making Use of a Smart Fog Hub to Develop New Services in Airports. Lecture Notes in Computer Science, 338–347. doi:10.1007/978-3-319-75178-8_28.

Salis, A., Mancini, G., Bulla, R., Cocco, P., Lezzi, D., & Lordan, F. (2018). Benefits of a Fog-to-Cloud Approach in Proximity Marketing. Euro-Par 2018: Parallel Processing Workshops, 239–250. doi:10.1007/978-3-030-10549-5_19.

Salis, A., Bulla, R., Mancini, G., Cocco, P., & Jensen, J. (2018). Anatomy of a Fog-to-Cloud Distributed Recommendation System in Airports. 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). doi:10.1109/ucc-companion.2018.00067.

Czogalla, O., & Naumann, S. (2016). Pedestrian indoor navigation for complex public facilities. 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN). doi:10.1109/ipin.2016.7743672.

Lara-Alvarez, P., Jadán-Guerrero, J., Guevara-Maldonado, C., Sanchez-Gordon, S., Calle-Jimenez, T., Salvador-Ullauri, L., … Espinoza, W. I. (2019). Application to Guide People with Visual Disability on Internal Buildings, Using Beacon Bluetooth Positioning Systems. Advances in Usability and User Experience, 375–382. doi:10.1007/978-3-030-19135-1_37.

Rykowski, J., Chojnacki, T., & Strykowski, S. (2018). In-Store Proximity Marketing by Means of IoT Devices. Collaborative Networks of Cognitive Systems, 164–174. doi:10.1007/978-3-319-99127-6_15

Manimuthu, A., Dharshini, V., Zografopoulos, I., Priyan, M. K., & Konstantinou, C. (2021). Contactless Technologies for Smart Cities: Big Data, IoT, and Cloud Infrastructures. SN Computer Science, 2(4). doi:10.1007/s42979-021-00719-0.

Li, G., Yao, Y., Wu, J., Liu, X., Sheng, X., & Lin, Q. (2020). A new load balancing strategy by task allocation in edge computing based on intermediary nodes. EURASIP Journal on Wireless Communications and Networking, 2020(1). doi:10.1186/s13638-019-1624-9.

Maia, A. M., Ghamri-Doudane, Y., Vieira, D., & Franklin de Castro, M. (2020). Dynamic Service Placement and Load Distribution in Edge Computing. 2020 16th International Conference on Network and Service Management (CNSM). doi:10.23919/cnsm50824.2020.9269059.

Petri, I., Rana, O., Zamani, A. R., & Rezgui, Y. (2019). Edge-Cloud Orchestration: Strategies for Service Placement and Enactment. 2019 IEEE International Conference on Cloud Engineering (IC2E). doi:10.1109/ic2e.2019.00020.

Sinaeepourfard, A., Krogstie, J., & Petersen, S. A. (2019). D2C-DM: Distributed-to-Centralized Data Management for Smart Cities Based on Two Ongoing Case Studies. Intelligent Systems and Applications, 619–632. doi:10.1007/978-3-030-29513-4_46.

Cirillo, F., Gomez, D., Diez, L., Elicegui Maestro, I., Gilbert, T. B. J., & Akhavan, R. (2020). Smart City IoT Services Creation Through Large-Scale Collaboration. IEEE Internet of Things Journal, 7(6), 5267–5275. doi:10.1109/jiot.2020.2978770.

Sinaeepourfard, A., Krogstie, J., & Sengupta, S. (2020). Distributed-to-Centralized Data Management: A New Sense of Large-Scale ICT Management of Smart City IoT Networks. IEEE Internet of Things Magazine, 3(3), 76–82. doi:10.1109/iotm.0001.1900038.

Keniya, R., & Mehendale, N. (2020). Real-Time Social Distancing Detector Using Socialdistancingnet-19 Deep Learning Network. SSRN Electronic Journal. doi:10.2139/ssrn.3669311.

Jarke, M., Otto, B., & Ram, S. (2019). Data Sovereignty and Data Space Ecosystems. Business & Information Systems Engineering, 61(5), 549–550. doi:10.1007/s12599-019-00614-2.

Salis, A., & Jensen, J. (2020). A smart fog-to-cloud system in airport: challenges and lessons learnt. 2020 21st IEEE International Conference on Mobile Data Management (MDM). doi:10.1109/mdm48529.2020.00078.

Full Text: PDF

DOI: 10.28991/HIJ-2021-02-04-01


  • There are currently no refbacks.

Copyright (c) 2021 Antonio Salis