Investigating the Correlation Between Bitcoin Trading Volume and Technical Indicators Using Data Mining Techniques
Downloads
This study aims to examine the relationship between Bitcoin trading volume and key technical indicators using data-mining techniques to better understand how trading activity influences momentum and volatility in blockchain markets. The methodology involves analyzing a historical dataset of Bitcoin’s daily trading records from 2018 to 2023, which includes the Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), Simple and Exponential Moving Averages (SMA, EMA), and the Average True Range (ATR). Pearson correlation analysis was applied to identify linear associations between trading volume and these technical indicators. The results show significant positive correlations between trading volume and momentum or trend measures such as the 7-day RSI (r = 0.45, p < 0.05), SMA (r = 0.38, p < 0.05), EMA (r = 0.41, p < 0.05), and ATR (r = 0.48, p < 0.05), indicating that higher participation accompanies stronger market momentum and greater price variability. Conversely, the weak and non-significant correlation with MACD (r = –0.12, p = 0.15) suggests that volume has limited influence on lagging trend-reversal signals. The novelty of this study lies in integrating volume-based behavior into technical indicator analysis, extending the traditional volume–price–volatility framework to cryptocurrency markets and providing practical insights for momentum-driven trading strategies and volatility-aware risk management.
Downloads
[1] Maidin, S. S. (2025). Analyzing the Evolution of AIGenerated Art Styles Using Time Series Analysis: A Trend Study on NFT Artworks. Journal of Digital Market and Digital Currency, 2(2), 205–229. doi:10.47738/jdmdc.v2i2.32.
[2] Hughes, L., Dwivedi, Y. K., Misra, S. K., Rana, N. P., Raghavan, V., & Akella, V. (2019). Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. International Journal of Information Management, 49, 114–129. doi:10.1016/j.ijinfomgt.2019.02.005.
[3] Prasetio, A. B., bin Mohd Aboobaider, B., & bin Ahmad, A. (2025). Predicting Customer Conversion in Digital Marketing: Analyzing the Impact of Engagement Metrics Using Logistic Regression, Decision Trees, and Random Forests. Journal of Digital Market and Digital Currency, 2(2), 181-204. doi:10.47738/jdmdc.v2i2.34.
[4] Abbasi, G. A., Tiew, L. Y., Tang, J., Goh, Y. N., & Thurasamy, R. (2021). The adoption of cryptocurrency as a disruptive force: Deep learning-based dual stage structural equation modelling and artificial neural network analysis. PLoS ONE, 16(3 March 2021), 247582. doi:10.1371/journal.pone.0247582.
[5] El Emary, I. M. M. (2024). Classification of Bitcoin Ransomware Transactions Using Random Forest: A Data Mining Approach for Blockchain Security. Journal of Current Research in Blockchain, 2(2), 152–168. doi:10.47738/jcrb.v2i2.33.
[6] Hussain, M. A., Abd Latiff, M. S., Madni, S. H. H., Raja Mohd Rasi, R. Z., & Othman, M. F. I. (2019). Concept of Blockchain Technology. International Journal of Innovative Computing, 9(2). doi:10.11113/ijic.v9n2.238.
[7] Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. doi:10.1080/00207543.2018.1533261.
[8] Corbet, S., Eraslan, V., Lucey, B., & Sensoy, A. (2019). The effectiveness of technical trading rules in cryptocurrency markets. Finance Research Letters, 31, 32–37. doi:10.1016/j.frl.2019.04.027.
[9] Zhang, W., & Li, Y. (2023). Liquidity risk and expected cryptocurrency returns. International Journal of Finance and Economics, 28(1), 472–492. doi:10.1002/ijfe.2431.
[10] Dewi, D. A. (2025). Analyzing the Impact of Social Media and Influencer Endorsements on Game Revenue using Multiple Linear Regression in the Metaverse. International Journal Research on Metaverse, 2(2), 167–182. doi:10.47738/ijrm.v2i2.29.
[11] Izumi, C. (2024). Analyzing Price Volatility of Hedera Hashgraph Using GARCH Models: A Data Mining Approach. Journal of Current Research in Blockchain, 2(2), 135–151. doi:10.47738/jcrb.v2i2.35.
[12] Saiedi, E., Broström, A., & Ruiz, F. (2021). Global drivers of cryptocurrency infrastructure adoption. Small Business Economics, 57(1), 353–406. doi:10.1007/s11187-019-00309-8.
[13] Turistiati, A. T. (2025). Estimating Player Market Value in Virtual Leagues: A Clustering Approach Using Player Attributes for Metaverse Applications. International Journal Research on Metaverse, 2(2), 154–166. doi:10.47738/ijrm.v2i2.28.
[14] Li, W., Wang, X., Wang, Z., & Yang, M. (2023). Profitability and Data-Snooping Tests of Four Technical Trade Strategies for Cryptocurrency Pair BTC/USDT and ETH/USDT in Cryptocurrency Markets During 2022–2023. Journal of Accounting and Finance, 23(4). doi:10.33423/jaf.v23i4.6453.
[15] Warmayana, I. G. A. K. (2025). Predicting FIFA Ultimate Team Player Market Prices: A Regression-Based Analysis Using XGBoost Algorithms from FIFA 16-21 Dataset. International Journal Research on Metaverse, 2(2), 140–153. doi:10.47738/ijrm.v2i2.25.
[16] Siddique, Q., & Wahid, A. M. (2025). Analyzing Customer Spending Based on Transactional Data Using the Random Forest Algorithm. International Journal for Applied Information Management, 5(2), 111-124. doi:10.47738/ijaim.v5i2.103.
[17] Terentiev, O., Prosiankina-Zharova, T., Savastiyanov, V., Lakhno, V., & Kolmakova, V. (2021). The features of building a portfolio of trading strategies using the SAS OPTMODEL procedure. Computation, 9(7), 77. doi:10.3390/computation9070077.
[18] Bouri, E., Lau, C. K. M., Saeed, T., Wang, S., & Zhao, Y. (2021). On the intraday return curves of Bitcoin: Predictability and trading opportunities. International Review of Financial Analysis, 76. doi:10.1016/j.irfa.2021.101784.
[19] Omran, S. M., El-Behaidy, W. H., & Youssif, A. A. A. (2023). Optimization of Cryptocurrency Algorithmic Trading Strategies Using the Decomposition Approach. Big Data and Cognitive Computing, 7(4), 174. doi:10.3390/bdcc7040174.
[20] Chowdhury, R., Rahman, M. A., Rahman, M. S., & Mahdy, M. R. C. (2020). An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning. Physica A: Statistical Mechanics and Its Applications, 551. doi:10.1016/j.physa.2020.124569.
[21] Frattini, A., Bianchini, I., Garzonio, A., & Mercuri, L. (2022). Financial Technical Indicator and Algorithmic Trading Strategy Based on Machine Learning and Alternative Data. Risks, 10(12), 225. doi:10.3390/risks10120225.
[22] Balcilar, M., Bouri, E., Gupta, R., & Roubaud, D. (2017). Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 64, 74–81. doi:10.1016/j.econmod.2017.03.019.
[23] Hasibuan, M. S. (2025). Market Analysis of NFT Integration in Video Games. Journal of Digital Market and Digital Currency, 2(2), 157–180. doi:10.47738/jdmdc.v2i2.33.
[24] Zhang, Z., Jiang, C., & Lu, M. (2025). Fusion of Sentiment and Market Signals for Bitcoin Forecasting: A SentiStack Network Based on a Stacking LSTM Architecture. Big Data and Cognitive Computing, 9(6), 161. doi:10.3390/bdcc9060161.
[25] Wilder, J. W. (1978). New Concepts in Technical Trading Systems. Trend Research, North Carolina, United States.
[26] Aysan, A. F., Demir, E., Gozgor, G., & Lau, C. K. M. (2019). Effects of the geopolitical risks on Bitcoin returns and volatility. Research in International Business and Finance, 47, 511–518. doi:10.1016/j.ribaf.2018.09.011.
[27] Panigrahi, A. K., Vachhani, K., & Chaudhury, S. K. (2021). Trend identification with the Relative Strength Index (RSI) technical indicator – A conceptual study. Journal of Management Research and Analysis, 8(4), 159–169.
[28] Rosillo, R., Giner, J., Puente, J., & Ponte, B. (2013). Different Stock Market Models Using Support Vector Machines. International Journal of Trade, Economics and Finance, 310–313. doi:10.7763/ijtef.2013.v4.307.
[29] Joshi, D. L. (2022). Use of Moving Average Convergence Divergence for Predicting Price Movements. International Research Journal of MMC, 3(4), 21–25. doi:10.3126/irjmmc.v3i4.48859.
[30] Sarmini, Widiawati, C. R. A., Febrianti, D. R., & Yuliana, D. (2024). Volatility Analysis of Cryptocurrencies using Statistical Approach and GARCH Model a Case Study on Daily Percentage Change. Journal of Applied Data Sciences, 5(3), 838–848. doi:10.47738/jads.v5i3.261.
[31] Jung, H. S., Lee, S. H., Lee, H., & Kim, J. H. (2023). Predicting Bitcoin Trends through Machine Learning Using Sentiment Analysis with Technical Indicators. Computer Systems Science and Engineering, 46(2), 2231-2246. doi:10.32604/csse.2023.034466.
[32] Mazumder, S., Neogy, S., & Das, S. (2023). Simple Moving Average (SMA) Crossover Strategy with Buy Sell Indicator. Asia-Pacific Journal of Management and Technology, 03(04), 26–40. doi:10.46977/apjmt.2023.v03i04.004.
[33] Zatwarnicki, M., Zatwarnicki, K., & Stolarski, P. (2023). Effectiveness of the Relative Strength Index Signals in Timing the Cryptocurrency Market. Sensors, 23(3), 1664. doi:10.3390/s23031664.
[34] Alemerien, K., Al-Ghareeb, A., & Alksasbeh, M. Z. (2024). Sentiment analysis of online reviews: a machine learning based approach with TF-IDF vectorization. Journal of Mobile Multimedia, 20(5), 1089-1116. doi:10.13052/jmm1550-4646.2055.
[35] Vaidya, R. (2020). Accuracy of Moving Average Forecasting for NEPSE. Journal of Nepalese Business Studies, 13(1), 62–76. doi:10.3126/jnbs.v13i1.34706.
[36] Appel, G. (2005). Technical analysis: power tools for active investors. FT Press, Prentice Hall, New Jersey, United States. doi:10.5555/1408581.
[37] Kamalov, F. (2020). Forecasting significant stock price changes using neural networks. Neural Computing and Applications, 32(23), 17655-17667. doi:10.1007/s00521-020-04942-3.
[38] Chong, T., Ng, W.-K., & Liew, V. (2014). Revisiting the Performance of MACD and RSI Oscillators. Journal of Risk and Financial Management, 7(1), 1–12. doi:10.3390/jrfm7010001.
[39] Evelyn, Suryodiningrat, S. P., & Tarigan, M. (2025). K-Means Clustering for Segmenting AI Survey Respondents: Analysis of Information Sources and Impact Perceptions. International Journal for Applied Information Management, 5(1), 58–72. doi:10.47738/ijaim.v5i1.98.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















