Experimental and Numerical Modeling of a Cross-Flow Turbine Runner Made of HDPE: Experimental and Numerical Approach
Downloads
This study investigates the viability of high-density polyethylene (HDPE) as a sustainable, low-cost alternative to conventional metallic materials for Cross-flow turbine runners in micro-hydropower systems. The primary goal is to design, manufacture, and validate the hydrodynamic and structural performance of an HDPE runner. A three-stage methodology was applied: CAD-based design, thermoforming fabrication, and performance evaluation through computational fluid dynamics (CFD) and finite element analysis (FEA) using ANSYS. Numerical predictions were validated against experimental data obtained from a hydraulic test bench. Mesh refinement and turbulence modeling were included to ensure numerical reliability. Results show that the HDPE runner achieved efficiencies of 80-83% compared to a geometrically identical steel runner under similar operating conditions. Structural analysis confirmed von Mises stresses (8.5 MPa) and deformations (0.12 mm) remained well below HDPE’s yield strength (22 MPa), validating its mechanical integrity. Statistical comparison revealed a deviation of less than 4% between numerical and experimental results. This research provides a validated framework for using recyclable HDPE in turbine manufacturing. It demonstrates that HDPE can deliver comparable power output to steel while reducing manufacturing costs and environmental impact, offering a sustainable pathway for rural electrification.
Downloads
[1] Business Norway. (2024). Deep river mobile hydropower plants for off-grid areas. Business Norway, Oslo, Norway.
[2] Sen, R., & Bhattacharyya, S. C. (2014). Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy, 62, 388–398. doi:10.1016/j.renene.2013.07.028.
[3] Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shabara, H. M. (2015). Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews, 43, 40–50. doi:10.1016/j.rser.2014.11.045.
[4] Assefa, E. Y., & Tesfay, A. H. (2025). Effect of Blade Profile on Flow Characteristics and Efficiency of Cross-Flow Turbines. Energies, 18(12), 3203. doi:10.3390/en18123203.
[5] Harefa, P., Bramantya, M. A., & Waluyo, J. (2025). Numerical Simulation of the Effect of Number of Runner Blades on a Cross-Flow Turbine Performance. Proceedings of the 10th International Conference on Science and Technology (ICST 2024), 11–25. doi:10.2991/978-94-6463-772-4_3.
[6] Hunt, A., Talpey, G., & Polagye, B. (2025). Experimental evaluation of advanced control strategies for high-blockage cross-flow turbine arrays. arXiv preprint arXiv:2507.02194. doi:10.48550/arXiv.2507.02194.
[7] Harvey, A. (1993). Micro-hydro design manual: A guide to small-scale water power schemes. Intermediate Technology Publications, London, United Kingdom.
[8] Ahmad, H., & Rodrigue, D. (2025). Mechanical Recycling of Crosslinked High-Density Polyethylene (xHDPE). Processes, 13(3), 809. doi:10.3390/pr13030809.
[9] MachineMFG. (2025). Polypropylene vs. HDPE: Material differences and comparisons. MachineMFG, Nanjing, China. Available online: https://shop.machinemfg.com/polypropylene-vs-hdpe-material-differences-and-comparisons/ (accessed on November 2025).
[10] Liu, J., Zhao, C., Zhong, S., & Johanning, L. (2025). The Recyclability of Wind Turbine Blade Material, Manufacturing Process, and Recycling Technology. Marine Energy Research, 2(3), 10014–10014. doi:10.70322/mer.2025.10014.
[11] Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625-2643. doi:10.1016/j.wasman.2009.06.004.
[12] Akin, H., Aytac, Z., Ayancik, F., Ozkaya, E., Arioz, E., Celebioglu, K., & Aradag, S. (2013). A CFD aided hydraulic turbine design methodology applied to Francis turbines. International Conference on Power Engineering, Energy and Electrical Drives, 694–699. doi:10.1109/PowerEng.2013.6635694.
[13] Prabowoputra, D. M., Prabowo, A. R., Yaningsih, I., Tjahjana, D. D. D. P., Laksono, F. B., Adiputra, R., & Suryanto, H. (2023). Effect of Blade Angle and Number on the Performance of Bánki Hydro-Turbines: Assessment using CFD and FDA Approaches. Evergreen, 10(1), 519–530. doi:10.5109/6782156.
[14] Popescu, C. (2013). Design and Manufacturing of a Low Head Banki Turbine. Applied Mechanics and Materials, 371, 672-676. doi:10.4028/www.scientific.net/AMM.371.672.
[15] Laghari, J. A., Mokhlis, H., Bakar, A. H. A., & Mohammad, H. (2013). A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology. Renewable and Sustainable Energy Reviews, 20, 279-293. doi:10.1016/j.rser.2012.12.002.
[16] Fraenkel, P., Paish, O., Harvey, A., Brown, A., Edwards, R., & Bokalders, V. (1991). Micro-hydro Power. IT Power, Eversley, United Kingdom. Available online: https://www.osti.gov/etdeweb/biblio/5564378 (accessed on November 2025).
[17] Ghosh, T. K., & Prelas, M. A. (2011). Hydropower. In Energy Resources and Systems: Volume 2: Renewable Resources. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-1402-1_3.
[18] Williamson, S. J., Stark, B. H., & Booker, J. D. (2014). Low head Pico hydro turbine selection using a multi-criteria analysis. Renewable Energy, 61, 43-50. doi:10.1016/j.renene.2012.06.020.
[19] Paish, O. (2002). Small hydropower: Technology and current status. Renewable and Sustainable Energy Reviews, 6(6), 537–556. doi:10.1016/S1364-0321(02)00006-0.
[20] Anand, R. S., Jawahar, C. P., Bellos, E., & Malmquist, A. (2021). A comprehensive review on Crossflow turbine for hydropower applications. Ocean Engineering, 240(1), 44–44. doi:10.1016/j.oceaneng.2021.110015.
[21] Nasir, B. A. (2013). Design of High Efficiency Cross-Flow Turbine for Hydro-Power Plant. International Journal of Engineering and Advanced Technology, 2(23), 2249–8958.
[22] Adhau, S. P., Moharil, R. M., & Adhau, P. G. (2012). Mini-hydro power generation on existing irrigation projects: Case study of Indian sites. Renewable and Sustainable Energy Reviews, 16(7), 4785-4795. doi:10.1016/j.rser.2012.03.066.
[23] Wang, L., Lee, D. J., Liu, J. H., Chen, Z. Z., Kuo, Z. Y., Lee, W. J., ... & Li, Y. C. (2009, July). A small hydropower (SHP) system in Taiwan using outlet-water energy of a reservoir: System introduction and measured results. IEEE Power & Energy Society General Meeting, 1-7. doi:10.1109/PES.2009.5275958.
[24] Chattha, J. A., Khan, M. S., Wasif, S. T., Ghani, O. A., Zia, M. O., & Hamid, Z. (2010). Design of a cross flow turbine for a micro-hydro power application. American Society of Mechanical Engineers, Power Division (Publication) POWER, 49354, 637–644. doi:10.1115/POWER2010-27184.
[25] Gay, D. (1997). Matériaux composites. Hermès, Paris.
[26] Andoh, P. Y., Sekyere, C. K. K., Ayetor, G. K. K., & Sackey, M. N. (2021). Fabrication and Testing of a Low-Cost Wind Turbine Blade Using Bamboo Reinforced Recycled Plastic. Journal of Applied Engineering and Technological Science, 2(2), 125–138. doi:10.37385/jaets.v2i2.212.
[27] Bilton, K. (2016). Design and fabrication of the trailing edge of a hydraulic turbine blade. Doctoral dissertation, École de technologie supérieure, Montreal, Canada.
[28] Alorchi, T. (2024). Digital investigation on the use of an HDPE and wood-based composite for the manufacture of corrugated sheet metal by thermoforming. Doctoral dissertation, Université du Québec en Abitibi-Témiscamingue, Quebec, Canada.
[29] Basiji, F., Erchiqui, F., Koubaa, A., & Ghasemi, I. (2025). Influence of fiber concentration and length on the dielectric, mechanical, and thermal properties of maple wood fiber-reinforced polypropylene. Journal of Thermoplastic Composite Materials. doi:10.1177/08927057251319772.
[30] Lodge, A. S. (1964). Elastic liquids. Academic Press, New York, United States.
[31] Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1963). A study of stress relaxation with finite strain. Transactions of the Society of Rheology, 7(1), 391-410. doi:10.1122/1.548963.
[32] Lodge, A. S. (1964). Elastic liquids: An introductory vector treatment of finite-strain polymer rheology. Academic Press, New York, United States.
[33] Reddy, J. N. (1993). An introduction to the finite element method. McGraw-Hill, New York, United States.
[34] Koffi, A., Mijiyawa, F., Koffi, D., Erchiqui, F., & Toubal, L. (2021). Mechanical properties, wettability and thermal degradation of HDPE/birch fiber composite. Polymers, 13(9), 1459. doi:10.3390/polym13091459.
[35] Adhikari, R., & Wood, D. (2018). The design of high efficiency crossflow hydro turbines: A review and extension. Energies, 11(2), 267. doi:10.3390/en11020267.
[36] Quaranta, E., Perrier, J. P., & Revelli, R. (2022). Optimal design process of crossflow Banki turbines: Literature review and novel expeditious equations. Ocean Engineering, 257, 111582. doi:10.1016/j.oceaneng.2022.111582.
[37] Mockmore, C. A. (1949). The Banki water turbine. Engineering Experiment Station, Oregon State College, Oregon, United States.
[38] Leguizamón, S., & Avellan, F. (2020). Computational parametric analysis of the design of cross-flow turbines under constraints. Renewable Energy, 159, 300-311. doi:10.1016/j.renene.2020.03.187.
[39] Kifumbi, F., Ngoma, G. D., Kabeya, P., & Umba-di-Mbudi, C. N. Z. (2022). Design and Modeling of a Numerical Simulator of a Mini-hydropower for Performance Characterization of the Turbine Type of Francis, Cross-flow and Pelton. SIMULTECH, 1, 226-233. doi:10.5220/0011265000003274.
[40] Adanta, D., Sari, D. P., Syofii, I., Thamrin, I., Yani, I., Marwani, Fudholi, A., & Prakoso, A. P. (2024). Configuration blade shape for enhancement crossflow turbine performance by the CFD method. International Journal of Thermofluids, 22, 100665. doi:10.1016/j.ijft.2024.100665.
[41] Galvis-Holguin, S., Rio, J. S. Del, González-Arango, D. I., Correa-Quintana, E., & Meneses, L. D. R. (2025). Numerical and Experimental Validation of a New Methodology for the Design of Michel-Banki Turbine. CFD Letters, 17(5), 76–89. doi:10.37934/cfdl.17.5.7689.
[42] Kumar, G., & Nair, A. G. (2025). Dominant balance-based adaptive mesh refinement for incompressible fluid flows. Journal of Computational Physics, 114522. doi:10.1016/j.jcp.2025.114522.
[43] López-Pachón, M., & Marcé-Nogué, J. (2025). The crucial role of meshing in computational fluid dynamics simulations for organic geometries in paleobiology: Describing fluid dynamics performance through best practices. Methods in Ecology and Evolution, 16(10), 2170–2194. doi:10.1111/2041-210X.70146.
[44] Abbas, A., Alam, M., & Kumar, R. (2020). Analytical analysis of combined effect of interior guide tube and draft tube on cross flow turbine performance. Materials Today: Proceedings, 46, 5372–5377. doi:10.1016/j.matpr.2020.08.796.
[45] Tesfay, A. H., Weldemariam, S. A., & Gebrelibanos, K. G. (2025). Design and Development of Crossflow Turbine for Off-Grid Electrification. Energies, 18(19), 5108. doi:10.3390/en18195108.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















