Innovative Compositions of Shotcrete Mixtures for Reinforcement of Underground Mine Excavations
Downloads
The objective of this article is to develop a polymer-modified shotcrete composition to improve underground mine support. The authors propose a new formulation by integrating an aqueous emulsion of SKS-65 GP grade B latex into cementitious matrices. Methods include X-ray diffraction, particle-size analysis, rheological testing, mechanical strength tests, numerical modeling, in-situ trials at the Zholbarysty mine, and statistical evaluation. Findings show a 45% increase in compressive strength and a 30% reduction in rebound loss compared to standard mixtures. Field core samples confirmed reproducibility, with strength values within 1% of those from laboratory-tested cubes. The improved mix allows a 50% reduction in lining thickness, expanding the tunnel cross-section by 5% and lowering operational costs by 39%. Cost-benefit analysis and cross-sectional evaluation validate the approach's efficiency. The novelty of this work lies in combining microstructural insights with field-scale application, clarifying polymer-film formation mechanisms, and presenting an optimized, scalable shotcrete mix design. This integrated method provides a practical and cost-effective reinforcement solution, advancing current shotcrete technologies for underground operations.
Downloads
[1] Almenov, T., Zhanakova, R., Sarybayev, M., & Shabaz, D. M. (2025). A Novel Approach to Selecting Rational Supports for Underground Mining Workings. Civil Engineering Journal, 11(3), 1217–1241. doi:10.28991/CEJ-2025-011-03-022.
[2] Almenov, T., Bakhramov, B., Begalinov, A., Baigurin, Zh., Serdaliyev, E., & Amanzholov, D. (2015). Method of development of steeply falling vein deposits. Innovation patent No. 30460 for invention of the Republic of Kazakhstan (RK). Date of filing: 08.12.2014. Registered in the State Register of Inventions of the Republic of Kazakhstan on 23.09.2015. Available online: https://kz.patents.su/4-ip30460-sposob-razrabotki-krutopadayushhih-zhilnyh-mestorozhdenijj.html (accessed on July 2025).
[3] Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28–36. doi:10.33271/mining14.03.028.
[4] Kumar Samanta, B., & Kumar Singh, U. (2021). Technoeconomics of Shotcrete Shaft Lining for Underground Sustainable Mining. International Journal of Scientific Engineering and Research, 9(1), 1–7. doi:10.70729/se21103193310.
[5] Streltsov, E. V. (1978). Reinforcement of coal mine workings with sprayed concrete. NEDRA, Moscow, Russia.
[6] Shmatovsky, L. D., Kolomietc, A. N., & Zaitsev, M. S. (2013). Method for computing parameters of grouting rock self-stress. Geotekhnicheskaya Mekhanika, 219-231.
[7] Voronin, V. (1980). Shotcrete Support. NEDRA, Moscow, Russia.
[8] Thomas, L., Sebastian, J., Santhosh, A., Vijay, R., Ajukumar, V. N., Hameed Sultan, M. T. B. H., & Mubarak Ali, M. (2023). Physicochemical Modifications on Fibre Reinforced Polymer Composites for Mining Applications. Journal of Mines, Metals and Fuels, 71(12), 2545–2553. doi:10.18311/jmmf/2023/36535.
[9] Akpanbayeva, A., & Isabek, T. (2023). Application of chemical additives for wet shotcrete in underground mine conditions. Mining Journal of Kazakhstan, 2, 214. doi:10.48498/minmag.2023.214.2.005.
[10] Lindlar, B., Jahn, M., & Schlumpf, J. (2020). Concrete: Sika Sprayed Concrete Handbook. Sika Services AG, Baar, Switzerland.
[11] Wang, X., Islam, M. M., & Zhang, Q. (2024). Influence of materials and nozzle geometry on spray and placement behavior of wet-mix shotcrete. Case Studies in Construction Materials, 20, 2852. doi:10.1016/j.cscm.2024.e02852.
[12] Elbialy, S., Elfarnsawy, M., Salah, M., Abdel-Aziz, A., & Ibrahim, W. (2025). An Experimental Study on Steel Fiber Effects in High-Strength Concrete Slabs. Civil Engineering Journal, 11(1), 215–229. doi:10.28991/CEJ-2025-011-01-013.
[13] Alekseev, V., & Bazhenova, S. (2020). Optimization of Concrete Compositions for Sprayed Concrete in the Construction of Underground Structures. Bulletin of Belgorod State Technological University Named after. V. G. Shukhov, 1, 8–17. doi:10.34031/2071-7318-2020-5-1-8-17.
[14] Wang, W., Zhang, S., Wang, Y., Yuan, J., & Niu, D. (2024). Pore structure characteristics of admixture shotcrete and its quantitative relationship with mechanical properties in high geothermal environment. Journal of Materials Research and Technology, 28, 643–654. doi:10.1016/j.jmrt.2023.10.190.
[15] Zhukov, A., Bazhenova, S., Stepina, I., & Erofeeva, I. (2024). Optimization of Composition of Waterproofing Material Based on Modified Fine-Grained Concrete. Buildings, 14(6), 1748. doi:10.3390/buildings14061748.
[16] Panarin, I. I., Fedyuk, R. S., & Меrkulov, D. S. (2022). Reinforcement of construction of underground structures with shotcrete. Construction Materials and Products, 5(6), 5–18. doi:10.58224/2618-7183-2022-5-6-5-18.
[17] Filatiev, M., & Laguta, A. (2017). Experimental determination of angle values of the rocks full displacement when undermining them by breakage headings. Mining of Mineral Deposits, 11(4), 111–116. doi:10.15407/mining11.04.111.
[18] Tian, C., Tong, Y., Zhang, J., Ye, F., Song, G., Jiang, Y., & Zhao, M. (2024). Experimental study on mix proportion optimization of anti-calcium dissolution shotcrete for tunnels based on response surface methodology. Underground Space (China), 15, 203–220. doi:10.1016/j.undsp.2023.07.002.
[19] Konovalova, N., Pankov, P., Bespolitov, D., Petukhov, V., Panarin, I., Fomina, E., Lushpey, V., Fatkulin, A., & Othman, A. (2023). Road soil concrete based on stone grinder waste and wood waste modified with environmentally safe stabilizing additive. Case Studies in Construction Materials, 19. doi:10.1016/j.cscm.2023.e02318.
[20] Ahmed, T. I., El-Mehasseb, I. M., El-Shafai, N. M., Salama, R. S., & Tobbala, D. E. (2025). Investigation the mechanical, durability, heating Investigation the mechanical, durability, heating struggle, thermal gravimetric examination, and microstructure of geopolymer ceramic concrete incorporating nano-silica and nano-Soda-Cans. Construction and Building Materials, 467, 140325 10 1016 2025 140325. doi:10.1016/j.conbuildmat.2025.140325.
[21] Hu, Z., Wang, Q., Ma, Y., Lv, H., Liu, W., Yan, R., Wang, K., Shao, T., & Sun, Y. (2024). Study on shear failure characteristics of fiber-reinforced shotcrete-granite interface based on surface scanning. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e03486.
[22] Almenov, T., Nurkhanov, N., Bektur, B., & Ermakhan E. (2015). The development of rational structures of concrete. Bulletin of KazNTU, 5(111), 225-229.
[23] Chen, F. B., Li, M. Y., Wang, C. L., Jiao, H. Z., Chen, X. M., Yang, Y. X., ... & Niu, H. S. (2024). Solid waste-based super-retarded damp-shotcrete for low carbon and environmental protection. Journal of Cleaner Production, 448, 141588. doi:10.1016/j.jclepro.2024.141588.
[24] Heidarnezhad, F., & Zhang, Q. (2022). Shotcrete based 3D concrete printing: State of art, challenges, and opportunities. Construction and Building Materials, 323. doi:10.1016/j.conbuildmat.2022.126545.
[25] Hu, Z., Wang, Q., Lv, H., Li, K., Zhang, J., & Ma, Y. (2023). Improved mechanical and macro-microscopic characteristics of shotcrete by incorporating hybrid alkali-resistant glass fibers. Construction and Building Materials, 403, 133131. doi:10.1016/j.conbuildmat.2023.133131.
[26] Sun, G., Yang, X., Zheng, H., Wang, J., Yang, H., & Zhang, F. (2024). Preparation and accelerating mechanism of aluminum sulfate-based alkali-free liquid flash setting admixture for shotcrete. Construction and Building Materials, 422, 135799. doi:10.1016/j.conbuildmat.2024.135799.
[27] Demin, V., Khalikova, E., Rabatuly, M., Amanzholov, Z., Zhumabekova, A., Syzdykbaeva, D., Bakhmagambetova, G., & Yelzhanov, Y. (2024). Research into mine working fastening technology in the zones of increased rock pressure behind the longwall face to ensure safe mining operations. Mining of Mineral Deposits, 18(1), 27–36. doi:10.33271/mining18.01.027.
[28] Zaslavsky, Yu., & Druzhko, E. B. (1989). New Types of Support for Mine Workings. NEDRA, Moscow, Russia.
[29] Interstate standard GOST 10564-75. (1976). “Synthetic latex SKS-65 GP. Technical conditions. Available online: https://allgosts.ru/83/040/gost_10564-75 (accessed on November 2025).
[30] Pospehov, G. B., Norova, L. P., & Izotova, V. A. (2024). Comparing the methods of grain size analysis of gypsum-containing sulfuric acid wastes neutralized with limestone. Sustainable Development of Mountain Territories, 16(4), 1729–1742. doi:10.21177/1998-4502-2024-16-4-1729-1742.
[31] Beiniawski, Z. (1989). Engineering Rock Mass Classification. A Complete Manual for Engineers and Geologist in Mining, Civil and Petrolium Engineering. John Wiley & Sons, New Jersey, United States.
[32] Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics Felsmechanik Mécanique Des Roches, 6(4), 189–236. doi:10.1007/BF01239496.
[33] ST RK 3839-2023. (2023). Portland cement composite and composite cement: Technical conditions. Available online: https://online.zakon.kz/Document/?doc_id=31961955 (accessed on November 2025).
[34] ST RK 1284-2004. (2004). Crushed stone and gravel from dense rocks for construction works. Available online: https://bestprofi.com/document/519614737?0 (accessed on November 2025).
[35] ST RK 1217-2003. (2003). Sand for construction works: Test methods. Available online: https://online.zakon.kz/Document/?doc_id=30023283&ysclid=mdmsv6fyoh809255721&pos=3;-40#pos=3;-40 (accessed on November 2025).
[36] Interstate Standard GOST 23732-2011. (2011). Water for concrete and mortars: Technical conditions. Available online: https://internet-law.ru/gosts/gost/52176/ (accessed on November 2025).
[37] Rysbekov, K. B., Kyrgizbayeva, D. M., Miletenko, N. A., & Kuandykov, T. A. (2024). Integrated Monitoring of the Area of Zhilandy Deposits. Eurasian Mining, 41(1), 3–6. doi:10.17580/em.2024.01.01.
[38] Walter, L., Medjigbodo, G., Estevez, Y., Linguet, L., & Nait-Rabah, O. (2025). Tannin with sodium carbonate: A single additive for poured earth concrete with tropical soils. Results in Engineering, 25, 103981. doi:10.1016/j.rineng.2025.103981.
[39] Abdiev, A. R., Wang, J., Mambetova, R. S., Abdiev, A. A., & Abdiev, A. S. (2025). Geomechanical assessment of stress-strain conditions in structurally heterogeneous rock masses of Kyrgyzstan. Engineering Journal of Satbayev University, 147(2), 31–39. doi:10.51301/ejsu.2025.i2.05.
[40] Zhang, H., Guo, G., Li, H., Wang, T., Ni, J., & Meng, H. (2025). A new numerical method for calculating residual deformation in mined-out areas considering water–rock interaction and its application. Scientific Reports, 15(1), 11207 10 1038 41598–025–94001–5. doi:10.1038/s41598-025-94001-5.
[41] Altaie, M. R., & Dishar, M. M. (2024). Integration of Artificial Intelligence Applications and Knowledge Management Processes for Construction Projects Management. Civil Engineering Journal, 10(3), 738–756. doi:10.28991/CEJ-2024-010-03-06.
[42] Istekova, S., Makarov, A., Tolybaeva, D., Sirazhev, A., & Togizov, K. (2024). Determining the Boundaries of Overlying Strata Collapse Above Mined-Out Panels of Zhomart Mine Using Seismic Data. Geosciences (Switzerland), 14(11), 310. doi:10.3390/geosciences14110310.
[43] Imashev, A., Suimbayeva, A., Zhunusbekova, G., Adoko, A. C., & Issakov, B. (2024). Assessing stability of mine workings driven in stratified rock mass. Mining of Mineral Deposits, 18(1), 82–88. doi:10.33271/mining18.01.082.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















