Analyzing Online News Dissemination Patterns via Social Network Hypergraph Model
Downloads
This study aims to develop a novel method for analyzing the complex dissemination patterns of online media news using a social network hypergraph model, addressing the limitations of traditional graph models in capturing many-to-many relationships in news dissemination. The author integrates news content, user nodes, and topic tags into a multi-dimensional hypergraph structure. The approach includes detailed analysis of key elements of news dissemination across four dimensions (subject, content, channel, and effect), construction of the hypergraph model, and design of mechanisms for extracting dissemination paths and evaluating influencing factors. Experiments were conducted on real-world data from multiple social platforms to validate the method's effectiveness. The results demonstrate that the proposed hypergraph model outperforms traditional models (GCN, GAT, and RF) in terms of accuracy, F1 value, and error control. The model effectively reflects the complex structure and dynamic evolution of news dissemination, revealing significant factors such as user activity, topic sensitivity, and structural entropy. This research offers a new perspective on understanding and optimizing online news dissemination by leveraging the hypergraph model's ability to capture multi-dimensional interactions. It provides a more comprehensive and accurate analysis framework, laying a theoretical foundation for constructing efficient information dissemination models.
Downloads
[1] Zhang, Y., Lai, S., Peng, Z., & Rezaeipanah, A. (2025). HMNE: link prediction using hypergraph motifs and network embedding in social networks. Knowledge and Information Systems, 67(2), 1787–1809. doi:10.1007/s10115-024-02255-8.
[2] Li, Y., Fan, Z., & Song, X. (2025). Heterogeneous Hyperbolic Hypergraph Neural Network for Friend Recommendation in Location-based Social Networks. ACM Transactions on Knowledge Discovery from Data, 19(3). doi:10.1145/3708999.
[3] Sun, H., Tu, Z., Sui, D., Zhang, B., & Xu, X. (2024). A Federated Social Recommendation Approach with Enhanced Hypergraph Neural Network. ACM Transactions on Intelligent Systems and Technology, 16(1). doi:10.1145/3665931.
[4] Guo, Y., & Zhou, Z. (2024). SSRES: A Student Academic Paper Social Recommendation Model Based on a Heterogeneous Graph Approach. Mathematics, 12(11). doi:10.3390/math12111667.
[5] Xu, X., Przystupa, K., & Kochan, O. (2023). Social Recommendation Algorithm Based on Self-Supervised Hypergraph Attention. Electronics (Switzerland), 12(4). doi:10.3390/electronics12040906.
[6] Xiao, H. B., Hu, F., Li, P. Y., Song, Y. R., & Zhang, Z. K. (2024). Information Propagation in Hypergraph-Based Social Networks. Entropy, 26(11). doi:10.3390/e26110957.
[7] Sun, W. (2024). A Study on the Construction of a Computational Model for Online International Chinese Cultural Diffusion Based on Minecraft. Applied Mathematics and Nonlinear Sciences, 9(1). doi:10.2478/amns-2024-3630.
[8] Meng, C. Y., & Motevalli, H. (2024). Link prediction in social networks using hyper-motif representation on hypergraph. Multimedia Systems, 30(3). doi:10.1007/s00530-024-01324-w.
[9] Xue, P., Gao, Q., & Fan, J. (2025). Social recommendation based on contrastive learning of hypergraph convolution. Journal of Supercomputing, 81(6). doi:10.1007/s11227-025-07143-8.
[10] Wang, J., Zhang, Y., Hu, Y., & Yin, B. (2024). Large-Scale Traffic Prediction with Hierarchical Hypergraph Message Passing Networks. IEEE Transactions on Computational Social Systems, 11(6), 7103–7113. doi:10.1109/TCSS.2024.3419008.
[11] Han, J., Tang, Y., Tao, Q., Xia, Y., & Zhang, L. (2024). Dual Homogeneity Hypergraph Motifs with Cross-view Contrastive Learning for Multiple Social Recommendations. ACM Transactions on Knowledge Discovery from Data, 18(6). doi:10.1145/3653976.
[12] Xu, X. J., Wu, Z. Y., & Zhang, L. J. (2025). Estimation of the influence of the threshold model on directed hypergraphs. Social Network Analysis and Mining, 15(1), 1–13. doi:10.1007/s13278-025-01456-5.
[13] Zhang, J., Li, Y., Zou, R., Zhang, J., Jiang, R., Fan, Z., & Song, X. (2024). Hyper-relational knowledge graph neural network for next POI recommendation. World Wide Web, 27(4), 1–19. doi:10.1007/s11280-024-01279-y.
[14] Liu, S., Zhao, D., & Sun, Y. (2024). Effects of higher-order interactions and impulsive vaccination for rumor propagation. Chaos, 34(12), 123131. doi:10.1063/5.0241100.
[15] Gouda, K. C., Shrivastava, S., & Thakur, R. (2024). Subchannel assignment for social-assisted UAV cellular networks using dynamic hypergraph coloring. Vehicular Communications, 49(49). doi:10.1016/j.vehcom.2024.100808.
[16] Ao, D., Cao, Q., & Wang, X. (2024). Hypergraph contrastive learning for recommendation with side information. International Journal of Intelligent Computing and Cybernetics, 17(4), 657–670. doi:10.1108/IJICC-06-2024-0266.
[17] Yu, X., Nie, Y., Li, W., Luo, G., Lin, T., & Wang, W. (2024). Source inference for misinformation spreading on hypergraphs. Chaos, Solitons and Fractals, 187. doi:10.1016/j.chaos.2024.115457.
[18] Sun, X., Cheng, H., Liu, B., Li, J., Chen, H., Xu, G., & Yin, H. (2023). Self-Supervised Hypergraph Representation Learning for Sociological Analysis. IEEE Transactions on Knowledge and Data Engineering, 35(11), 11860–11871. doi:10.1109/TKDE.2023.3235312.
[19] Wang, Y., Li, Y., Wu, Y., & Wang, X. (2024). Exploring Multiple Hypergraphs for Heterogeneous Graph Neural Networks. Expert Systems with Applications, 236(236). doi:10.1016/j.eswa.2023.121230.
[20] Sun, X., Cheng, H., Liu, B., Li, J., Chen, H., Xu, G., & Yin, H. (2023). Self-Supervised Hypergraph Representation Learning for Sociological Analysis. IEEE Transactions on Knowledge and Data Engineering, 35(11), 11860–11871. doi:10.1109/tkde.2023.3235312.
[21] Huang, J., Lu, T., Zhou, X., Cheng, B., Hu, Z., Yu, W., & Xiao, J. (2023). HyperDNE: Enhanced hypergraph neural network for dynamic network embedding. Neurocomputing, 527, 155–166. doi:10.1016/j.neucom.2023.01.039.
[22] Sun, X., Yin, H., Liu, B., Meng, Q., Cao, J., Zhou, A., & Chen, H. (2023). Structure Learning Via Meta-Hyperedge for Dynamic Rumor Detection. IEEE Transactions on Knowledge and Data Engineering, 35(9), 9128–9139. doi:10.1109/TKDE.2022.3221438.
[23] Mancastroppa, M., Iacopini, I., Petri, G., & Barrat, A. (2023). Hyper-cores promote localization and efficient seeding in higher-order processes. Nature Communications, 14(1). doi:10.1038/s41467-023-41887-2.
[24] Chaudhary, L., & Singh, B. (2023). Autoencoder Model Using Edge Enhancement to Detect Communities in Complex Networks. Arabian Journal for Science and Engineering, 48(2), 1303–1314. doi:10.1007/s13369-022-06747-z.
[25] Wang, H., Zhou, W., Wen, J., & Qiao, S. (2024). Multiple hypergraph convolutional network social recommendation using dual contrastive learning. Data Mining and Knowledge Discovery, 38(4), 1929–1957. doi:10.1007/s10618-024-01021-2.
[26] Duan, Y., Huang, J., Deng, H., & Ni, X. (2024). Robustness of hypergraph under attack with limited information based on percolation theory. Chaos, Solitons & Fractals, 188, 115518. doi:10.1016/j.chaos.2024.115518.
[27] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 3438–3445. doi:10.1609/aaai.v34i04.5747.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.





















