Optimizing Green Business Information Management Systems Through Carbon-Neutral Digital Transformation Pathway Design
Downloads
This research develops a comprehensive framework for optimizing green business information management systems to achieve carbon neutrality goals through digital transformation. The study conducted cross-sector carbon footprint assessments of information systems across six industries, analyzing emission patterns based on operational scales, industry characteristics, and technological architectures. A multi-tiered optimization model was developed targeting infrastructure, data management, and application layers, validated through empirical data from enterprises undergoing digital transformation. Results reveal a strong negative correlation (r = -0.73) between digital maturity indices and emission intensity, with organizations implementing comprehensive digital transformation achieving average carbon reductions of 31% over five years. The proposed multi-tiered optimization approach enabled 42.6% emission reductions, with technology companies achieving 68% reductions. Economic analysis demonstrates return on investment ranging from 132-278% over five-year periods, with payback periods of 14-36 months. This study advances information management theory by integrating technological architecture with environmental performance governance, providing quantifiable carbon assessment methodologies across system layers and practical implementation matrices for industry-specific applications. The framework enables organizations to balance carbon reduction objectives with operational efficiency, addressing the critical gap between theoretical potential and practical implementation in carbon-neutral transformations.
Downloads
[1] Singh, R. K., & Modgil, S. (2024). Impact of information system flexibility and dynamic capabilities in building net zero supply chains. Journal of Enterprise Information Management, 37(3), 993–1015. doi:10.1108/JEIM-09-2023-0477.
[2] Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165–1188. doi:10.2307/41703503.
[3] Malhotra, A., Melville, N. P., & Watson, R. T. (2013). Spurring impactful research on information systems for environmental sustainability. MIS Quarterly: Management Information Systems, 37(4), 1265–1274. doi:10.25300/MISQ/2013/37:4.3.
[4] Zhang, Z., Hu, G., Mu, X., & Kong, L. (2022). From low carbon-to-carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 322, 116087. doi:10.1016/j.jenvman.2022.116087.
[5] Han, D., Li, M., & Lu, K. (2025). Digital platforms enabling carbon neutral technology innovation: based on market incentives and government constraints. Humanities and Social Sciences Communications, 12(1), 1–17. doi:10.1057/s41599-025-04691-5.
[6] Zhang, M., Liu, R., & Sun, H. (2025). Achieving carbon-neutral economies through circular economy, digitalization, and energy transition. Scientific Reports, 15(1), 13779. doi:10.1038/s41598-025-97810-w.
[7] Han, S., Zhang, H., Li, H., & Xun, Z. (2025). Digital transformation and carbon emission reduction: The moderating effect of external pressure and support. Journal of Cleaner Production, 500, 145108. doi:10.1016/j.jclepro.2025.145108.
[8] Pourhejazy, P., Wyciślak, S., Solvang, W. D., & Ericson, Å. (2025). Editorial: Supply chain transformation for pursuing carbon-neutrality. Frontiers in Sustainability, 6, 1548813. doi:10.3389/frsus.2025.1548813.
[9] Liao, H. T., Pan, C. L., & Zhang, Y. (2023). Smart digital platforms for carbon neutral management and services: Business models based on ITU standards for green digital transformation. Frontiers in Ecology and Evolution, 11, 1134381. doi:10.3389/fevo.2023.1134381.
[10] Sarkis, J., Koo, C., & Watson, R. T. (2013). Green information systems and technologies - This generation and beyond: Introduction to the special issue. Information Systems Frontiers, 15(5), 695–704. doi:10.1007/s10796-013-9454-5.
[11] Jałowiec, T., Wojtaszek, H., & Miciuła, I. (2022). Analysis of the Potential Management of the Low‐Carbon Energy Transformation by 2050. Energies, 15(7), 2351. doi:10.3390/en15072351.
[12] Raja, S. P. (2021). Green Computing and Carbon Footprint Management in the IT Sectors. IEEE Transactions on Computational Social Systems, 8(5), 1172–1177. doi:10.1109/TCSS.2021.3076461.
[13] Slameršak, A., Kallis, G., & O’Neill, D. W. (2022). Energy requirements and carbon emissions for a low-carbon energy transition. Nature Communications, 13(1), 6932. doi:10.1038/s41467-022-33976-5.
[14] Gholami, R., Sulaiman, A. B., Ramayah, T., & Molla, A. (2013). Senior managers’ perception on green information systems (IS) adoption and environmental performance: Results from a field survey. Information and Management, 50(7), 431–438. doi:10.1016/j.im.2013.01.004.
[15] Mat Nawi, M. N., Fauzi, M. A., Ting, I. W. K., Wider, W., & Amaka, G. B. (2025). Green information technology and green information systems: science mapping of present and future trends. Kybernetes, 54(6), 3136–3155. doi:10.1108/K-10-2023-2139.
[16] Zhao, G., Jiang, P., Zhang, H., Li, L., Ji, T., Mu, L., Lu, X., & Zhu, J. (2024). Mapping out the regional low-carbon and economic biomass supply chain by aligning geographic information systems and life cycle assessment models. Applied Energy, 369, 123599. doi:10.1016/j.apenergy.2024.123599.
[17] Wei, Y. M., Chen, K., Kang, J. N., Chen, W., Wang, X. Y., & Zhang, X. (2022). Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review. Engineering, 14, 52–63. doi:10.1016/j.eng.2021.12.018.
[18] Huovila, A., Siikavirta, H., Antuña Rozado, C., Rökman, J., Tuominen, P., Paiho, S., Hedman, Å., & Ylén, P. (2022). Carbon-neutral cities: Critical review of theory and practice. Journal of Cleaner Production, 341, 130912. doi:10.1016/j.jclepro.2022.130912.
[19] Shaharudin, M. S., Fernando, Y., Chiappetta Jabbour, C. J., Sroufe, R., & Jasmi, M. F. A. (2019). Past, present, and future low carbon supply chain management: A content review using social network analysis. Journal of Cleaner Production, 218, 629–643. doi:10.1016/j.jclepro.2019.02.016.
[20] Guan, Z., Zhao, Y., & Wang, X. (2022). Design pragmatic method to low-carbon economy visualisation in enterprise systems based on big data. Enterprise Information Systems, 16(8–9), 1898049. doi:10.1080/17517575.2021.1898049.
[21] Dalene, F. (2012). Technology and information management for low-carbon building. Journal of Renewable and Sustainable Energy, 4(4), 041402. doi:10.1063/1.3694120.
[22] Dias, A. C., & Arroja, L. (2012). Comparison of methodologies for estimating the carbon footprint-case study of office paper. Journal of Cleaner Production, 24, 30–35. doi:10.1016/j.jclepro.2011.11.005.
[23] Li, Y., Yang, X., Du, E., Liu, Y., Zhang, S., Yang, C., Zhang, N., & Liu, C. (2024). A review on carbon emission accounting approaches for the electricity power industry. Applied Energy, 359, 122681. doi:10.1016/j.apenergy.2024.122681.
[24] Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, 21(9), 1218–1230. doi:10.1007/s11367-016-1087-8.
[25] Uddin, M., Darabidarabkhani, Y., Shah, A., & Memon, J. (2015). Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review. Renewable and Sustainable Energy Reviews, 51, 1553–1563. doi:10.1016/j.rser.2015.07.061.
[26] Yang, J., Zheng, C., & Liu, H. (2022). Digital Transformation and Rule of Law Based on Peak CO2 Emissions and Carbon Neutrality. Sustainability (Switzerland), 14(12), 7487. doi:10.3390/su14127487.
[27] Zampou, E., Mourtos, I., Pramatari, K., & Seidel, S. (2022). A Design Theory for Energy and Carbon Management Systems in the Supply Chain. Journal of the Association for Information Systems, 23(1), 329–371. doi:10.17705/1jais.00725.
[28] Golden, B. L., Wasil, E. A., & Harker, P. T. (1989). The analytic hierarchy process. Applications and Studies, Berlin, Germany. doi:10.1007/978-3-642-50244-6.
[29] Yao, H., Xu, P., Wang, Y., & Chen, R. (2023). Exploring the low-carbon transition pathway of China’s construction industry under carbon-neutral target: A socio-technical system transition theory perspective. Journal of Environmental Management, 327, 116879. doi:10.1016/j.jenvman.2022.116879.
[30] Bhatia, M., Meenakshi, N., Kaur, P., & Dhir, A. (2024). Digital technologies and carbon neutrality goals: An in-depth investigation of drivers, barriers, and risk mitigation strategies. Journal of Cleaner Production, 451, 141946. doi:10.1016/j.jclepro.2024.141946.
[31] He, B., Yuan, X., Qian, S., & Li, B. (2023). Carbon neutrality: a review. Journal of Computing and Information Science in Engineering, 23(6), 060809. doi:10.1115/1.4062545.
[32] Mao, J., Yuan, H., Xiong, L., & Huang, B. (2024). Research Review of Green Building Rating System under the Background of Carbon Peak and Carbon Neutrality. Buildings, 14(5), 1257. doi:10.3390/buildings14051257.
[33] Shang, W. L., & Lv, Z. (2023). Low carbon technology for carbon neutrality in sustainable cities: A survey. Sustainable Cities and Society, 92, 104489. doi:10.1016/j.scs.2023.104489.
[34] Sheng, H., Feng, T., & Liu, L. (2023). The influence of digital transformation on low-carbon operations management practices and performance: does CEO ambivalence matter? International Journal of Production Research, 61(18), 6215–6229. doi:10.1080/00207543.2022.2088426.
[35] Liu, Y., Tian, L., Sun, H., Zhang, X., & Kong, C. (2022). Option pricing of carbon asset and its application in digital decision-making of carbon asset. Applied Energy, 310, 118375. doi:10.1016/j.apenergy.2021.118375.
[36] Jagger, N., Foxon, T., & Gouldson, A. (2013). Skills constraints and the low carbon transition. Climate Policy, 13(1), 43–57. doi:10.1080/14693062.2012.709079.
[37] Kannan, D., Solanki, R., Kaul, A., & Jha, P. C. (2022). Barrier analysis for carbon regulatory environmental policies implementation in manufacturing supply chains to achieve zero carbon. Journal of Cleaner Production, 358, 131910. doi:10.1016/j.jclepro.2022.131910.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















