Implementation of Boost PFC in the Induction Heating System for EMI–RFI Suppression

Rahul Raman, Debanga Jyoti Baruah, Saurav Dey, Padmini Neog, Kritika Taniya Saharia


The present work deals with the design and performance analysis of a high frequency resonant inverter based Induction Heating (IH) system employing Boost Power Factor Correction (PFC) technique to overcome the problems due to EMI and RFI. Most of the existing techniques use passive filters for harmonics attenuation that fail to meet the present day requirements because of drawbacks like considerably high THD, poor dynamic performance, etc. This paper presents a new control approach for boost PFC based on inner and outer loops to eliminate the problems due to harmonics in the IH system. The equivalent circuit parameter model of the IH system has been used to analyze the presence of harmonics, and the incorporation of boost PFC at the input of the system shows its elimination as per the stringent EMI-RFI regulations. Moreover, attention has been paid to the design algorithm of the boost PFC, and a detailed mathematical analysis has been done to outline an approach for its parameter selection. A comparative analysis of the IH system with and without the incorporation of the boost PFC has been done in terms of the THD in the input current waveform. The findings of the present work show that the incorporation of Boost PFC eliminates the harmonics in the IH system in a better manner than the existing techniques.


Doi: 10.28991/HIJ-2021-02-02-05

Full Text: PDF


Induction Heating; PSIM; Harmonics; Resonant Inverter; Boost PFC; EMI; RFI.


Xiang, X., Luo, A., & Li, Y. (2020). Intelligent Control Method of Power Supply for Tundish Electromagnetic Induction Heating System. Journal of Modern Power Systems and Clean Energy, 8(6), 1188–1195. doi:10.35833/mpce.2019.000066.

Tan, Y. Z., Chandrakant, S. P., Ang, J. S. T., Wang, H., & Chew, J. W. (2020). Localized induction heating of metallic spacers for energy-efficient membrane distillation. Journal of Membrane Science, 606, 118150. doi:10.1016/j.memsci.2020.118150.

Yang, C., Xie, J., Wu, S., Amirkhanian, S., Wang, Z., Song, J., … Zhang, L. (2021). Enhancement mechanism of induction heating on blending efficiency of RAP - virgin asphalt in steel slag recycled asphalt mixtures. Construction and Building Materials, 269, 121318. doi:10.1016/j.conbuildmat.2020.121318.

Liu, Y., Nishiyama, M., Tani, M., Kurata, M., & Iwata, K. (2021). Steel beam with web opening reinforced by induction heating. Journal of Constructional Steel Research, 176, 106399. doi:10.1016/j.jcsr.2020.106399.

Chyba, C. F., Hand, K. P., & Thomas, P. J. (2021). Magnetic induction heating of planetary satellites: Analytical formulae and applications. Icarus, 360, 114360. doi:10.1016/j.icarus.2021.114360.

Zhang, C., Wu, Y., & Lu, Y. (2020). Experimental and numerical study on induction heating performance of quaternary nitrate‐nitrite molten salt. International Journal of Energy Research, 45(2), 2211–2221. doi:10.1002/er.5914.

Han, W., Chau, K. T., & Zhang, Z. (2017). Flexible Induction Heating Using Magnetic Resonant Coupling. IEEE Transactions on Industrial Electronics, 64(3), 1982–1992. doi:10.1109/tie.2016.2620099.

Wenxu, Y., Zhicheng, J., & Xianling, L. (2006). Power Control for Induction Heating by Asymmetrical Pulse Density Modulation. 2006 1ST IEEE Conference on Industrial Electronics and Applications. doi:10.1109/iciea.2006.257061.

Sanz-Serrano, F., Sagues, C., & Llorente, S. (2015). Power distribution in coupled multiple-coil inductors for induction heating appliances. 2015 IEEE Industry Applications Society Annual Meeting, 52(3), 2537-2544. doi:10.1109/ias.2015.7356805.

Lope, I., Acero, J., & Carretero, C. (2016). Analysis and Optimization of the Efficiency of Induction Heating Applications with Litz-Wire Planar and Solenoidal Coils. IEEE Transactions on Power Electronics, 31(7), 5089–5101. doi:10.1109/tpel.2015.2478075.

Lucia, O., Maussion, P., Dede, E. J., & Burdio, J. M. (2014). Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Transactions on Industrial Electronics, 61(5), 2509–2520. doi:10.1109/tie.2013.2281162.

Namadmalan, A. R., Fathi, S. H., Moghani, J. S., & Sadeghi, S. H. (2011). Power quality improvement for three phase current source induction heating systems. 2011 6th IEEE Conference on Industrial Electronics and Applications, 2580-2584. doi:10.1109/iciea.2011.5976028.

Sarnago, H., Lucia, O., Mediano, A., & Burdio, J. M. (2013). Modulation Scheme for Improved Operation of an RB-IGBT-Based Resonant Inverter Applied to Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 60(5), 2066–2073. doi:10.1109/tie.2012.2207652.

Chudjuarjeen, S., Anawach Sangswang, & Koompai, C. (2009). An improved LLC resonant inverter for induction heating with asymmetrical control. 2009 IEEE International Symposium on Industrial Electronics, 58(7), 2915-2925. doi:10.1109/isie.2009.5222544.

Ahmed, N. A. (2011). High-Frequency Soft-Switching AC Conversion Circuit with Dual-Mode PWM/PDM Control Strategy for High-Power IH Applications. IEEE Transactions on Industrial Electronics, 58(4), 1440–1448. doi:10.1109/tie.2010.2050752.

Pal, P., Sadhu, P. K., Pal, N., & Sanyal, S. (2015). An exclusive design of EMI-RFI suppressor for modified half bridge inverter fitted induction heating equipment. International Journal of Mechatronics, Electrical and Computer Technology (IJMEC), 5(15), 2084-2100.

Millán, I., Burdío, J. M., Acero, J., Lucía, O., & Llorente, S. (2011). Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electronics, 4(5), 587-592. doi:10.1049/iet-pel.2010.0107.

Fujita, H., & Akagi, H. (1991). A practical approach to harmonic compensation in power systems-series connection of passive and active filters. Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, 27(6), 1020-1025. doi:10.1109/ias.1990.152323.

Barragan, L. A., Navarro, D., Acero, J., Urriza, I., & Burdio, J. M. (2008). FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 55(1), 11–20. doi:10.1109/tie.2007.896129.

Wernekinck, E., Kawamura, A., & Hoft, R. (1987). A high frequency AC/DC converter with unity power factor and minimum harmonic distortion. 1987 IEEE Power Electronics Specialists Conference. doi:10.1109/pesc.1987.7077190.

Figueres, E., Benavent, J. M., Garcera, G., & Pascual, M. (2007). A Control Circuit With Load-Current Injection for Single-Phase Power-Factor-Correction Rectifiers. IEEE Transactions on Industrial Electronics, 54(3), 1272–1281. doi:10.1109/tie.2007.891987.

Koertzen, H. W., van Wyk, J. D., & Ferreira, J. A. (1995). Design of the half-bridge, series resonant converter for induction cooking. Proceedings of PESC ’95 - Power Electronics Specialist Conference, 729-735. doi:10.1109/pesc.1995.474899.

Suzuki, T., Ikeda, H., Yoshida, H., Shinohara, S., Honda, K., Miyamoto, T., & Yamamoto, T. (1993). Shortwave DC-to-RF inverter to drive ultrasonic transducer. ISIE ’93 - Budapest: IEEE International Symposium on Industrial Electronics Conference Proceedings, 332-335. doi:10.1109/isie.1993.268785.

Suzuki, T., Nakabori, S., Ikeda, H., Yoshida, H., Honda, K., Miyamoto, T., & Yamamoto, T. (1994). Compact 600 W DC-to-RF MOSFET inverter for ultrasonic transducer at 1 MHz. Proceedings of 1994 IEEE International Symposium on Industrial Electronics (ISIE’94), 104-107. doi:10.1109/isie.1994.333140.

Kifune, H., Hatanaka, Y., & Nakaoka, M. (2003). Quasi-series-resonant-type soft-switching phase shift modulated inverter. IEE Proceedings - Electric Power Applications, 150(6), 725-732. doi:10.1049/ip-epa:20030558.

Shenkman, A., Axelrod, B., & Berkovich, Y. (2004). Improved modification of the single-switch AC-AC converter for induction heating applications. IEE Proceedings - Electric Power Applications, 151(1), 1-4. doi:10.1049/ip-epa:20030766.

Sarnago, H., Lucía, Ó., Mediano, A., & Burdío, J. M. (2013). Class-D/DE Dual-Mode-Operation Resonant Converter for Improved-Efficiency Domestic Induction Heating System. IEEE Transactions on Power Electronics, 28(3), 1274–1285. doi:10.1109/tpel.2012.2206405.

Young-Sup Kwon, Sang-Bong Yoo, & Dong-Seok Hyun. (1999). Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy. APEC ’99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), 575-581. doi:10.1109/apec.1999.749738.

Parida, N., Kumari, V., Bhaskar, D. V., & Maity, T. (2015). Power control techniques used in high frequency induction heating applications. 2015 International Conference on Circuits, Power and Computing Technologies (ICCPCT-2015), 1-6. doi:10.1109/iccpct.2015.7159378.

Carretero, C., Lucia, O., Acero, J., & Burdio, J. M. (2015). Phase-shift modulation in double half‐bridge inverter with common resonant capacitor for induction heating appliances. IET Power Electronics, 8(7), 1128-1136. doi:10.1049/iet-pel.2014.0229.

Meziane, B., & Zeroug, H. (2016). Comprehensive Power Control Performance Investigations of Resonant Inverter for Induction Metal Surface Hardening. IEEE Transactions on Industrial Electronics, 63(10), 6086–6096. doi:10.1109/tie.2016.2581145.

Full Text: PDF

DOI: 10.28991/HIJ-2021-02-02-05


  • There are currently no refbacks.

Copyright (c) 2021 Rahul Raman, Debanga Jyoti Baruah, Saurav Dey, Padmini Neog, Kritika Taniya Saharia