Public Opinion Guidance Model in Major Public Crisis Events Based on Accelerated Genetic Algorithm
Downloads
The research aims to enhance the effectiveness of the public opinion evolution guidance model, with a particular focus on the influence of opinion leaders, and address the shortcomings of traditional models, such as neglecting opinion leaders and insufficient network topology. Therefore, the relevant scale-free network is used to improve the traditional public opinion evolution model. An improved model integrating the two is proposed by introducing a real coded accelerated genetic algorithm. The experimental results show that the proposed model converges to four opinion clusters, with the average values of negative and positive opinions being 0.399 and 0.370, respectively, demonstrating the trend closest to the actual data. When the parameters are fixed, the ultimate development of public opinion shows obvious changing trends in different situations, and the validity of the model has been proved by practice. The research innovatively introduces the scale-free network based on Barabasi and Albert, and improves the Hegselmann Krause model. Meanwhile, by comprehensively considering the influence of opinion leaders and network topology factors, the model overcomes the shortcomings of traditional models in public opinion guidance and also demonstrates good practicability in practical applications.
Downloads
[1] Lee, F. L. F., Liang, H., Cheng, E. W., Tang, G. K. Y., & Yuen, S. (2022). Affordances, movement dynamics, and a centralized digital communication platform in a networked movement. Information Communication and Society, 25(12), 1699–1716. doi:10.1080/1369118X.2021.1877772.
[2] Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology (Singapore), 15(2), 965–980. doi:10.1007/s41870-019-00409-4.
[3] Park, K., & Jiang, H. (2023). Signaling, Verification, and Identification: The Way Corporate Social Advocacy Generates Brand Loyalty on Social Media. International Journal of Business Communication, 60(2), 439–463. doi:10.1177/2329488420907121.
[4] Zhong, Y., Liu, W., Lee, T. Y., Zhao, H., & Ji, J. (2021). Risk perception, knowledge, information sources and emotional states among COVID-19 patients in Wuhan, China. Nursing Outlook, 69(1), 13–21. doi:10.1016/j.outlook.2020.08.005.
[5] Vrontis, D., Makrides, A., Christofi, M., & Thrassou, A. (2021). Social media influencer marketing: A systematic review, integrative framework and future research agenda. International Journal of Consumer Studies, 45(4), 617–644. doi:10.1111/ijcs.12647.
[6] Zhang, X., Zhou, Y., Zhou, F., & Pratap, S. (2022). Internet public opinion dissemination mechanism of COVID-19: evidence from the Shuanghuanglian event. Data Technologies and Applications, 56(2), 283–302. doi:10.1108/DTA-11-2020-0275.
[7] Liu, Y., Zhu, J., Shao, X., Adusumilli, N. C., & Wang, F. (2021). Diffusion patterns in disaster-induced internet public opinion: based on a Sina Weibo online discussion about the ‘Liangshan fire’ in China. Environmental Hazards, 20(2), 163–187. doi:10.1080/17477891.2020.1758608.
[8] Zhang, Y., & Guo, L. (2021). ‘A battlefield for public opinion struggle’’: how does news consumption from different sources on social media influence government satisfaction in China?’ Information Communication and Society, 24(4), 594–610. doi:10.1080/1369118X.2019.1662073.
[9] Cai, Q. (2022). Early warning method of network public opinion communication crisis based on feature mining. International Journal of Web Based Communities, 18(3–4), 288–300. doi:10.1504/IJWBC.2022.125501.
[10] Liao, M. Jie, Zhang, J., Wang, R. Mei, & Qi, L. (2021). Simulation research on online marketing strategies of branded agricultural products based on the difference in opinion leader attitudes. Information Processing in Agriculture, 8(4), 528–536. doi:10.1016/j.inpa.2020.12.001.
[11] Chintalapudi, N., Battineni, G., & Amenta, F. (2021). Sentimental analysis of COVID-19 tweets using deep learning models. Infectious Disease Reports, 13(2), 329–339. doi:10.3390/IDR13020032.
[12] Malecki, K. M. C., Keating, J. A., & Safdar, N. (2021). Crisis Communication and Public Perception of COVID-19 Risk in the Era of Social Media. Clinical Infectious Diseases, 72(4), 697–702. doi:10.1093/cid/ciaa758.
[13] Siddiqui, M. S., Siddiqui, U. A., Khan, M. A., Alkandi, I. G., Saxena, A. K., & Siddiqui, J. H. (2021). Creating electronic word of mouth credibility through social networking sites and determining its impact on brand image and online purchase intentions in India. Journal of Theoretical and Applied Electronic Commerce Research, 16(4), 1008–1024. doi:10.3390/jtaer16040057.
[14] Mansyur, A., Karo, I. M. K., Firdaus, M., Simamora, E., Badzlan, M., Darari, R. H., & Panggabean, S. (2025). Impact of Cosine Similarity Function on SVM Algorithm for Public Opinion Mining About National Sports Week 2024 on X. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 11(2), 263–275. doi:10.26555/jiteki.v11i2.30605.
[15] Ahrens, L. (2024). The impact of public opinion on voting and policymaking. Zeitschrift Für Politikwissenschaft, 34(1), 77–100. doi:10.1007/s41358-024-00366-w.
[16] Guo, L., Su, C. C., & Chen, H. T. (2025). Do News Frames Really Have Some Influence in the Real World? A Computational Analysis of Cumulative Framing Effects on Emotions and Opinions about Immigration. International Journal of Press/Politics, 30(1), 211–231. doi:10.1177/19401612231204535.
[17] Bashiri, H., & Naderi, H. (2024). Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowledge and Information Systems, 66(12), 7305–7361. doi:10.1007/s10115-024-02214-3.
[18] Do, H. N., Do, N. B., Nguyen, T. M., & Nguyen, H. M. (2024). Anti-Brand Activism in the Collectivist Orientation: The Case of Online-Consumers-Run Communities. Journal of Promotion Management, 30(5), 811–841. doi:10.1080/10496491.2024.2318665.
[19] Chen, Z. (2022). Research on Internet Security Situation Awareness Prediction Technology Based on Improved RBF Neural Network Algorithm. Journal of Computational and Cognitive Engineering, 1(3), 103–108. doi:10.47852/bonviewJCCE149145205514.
[20] Cao, B., Zhao, J., Liu, X., Arabas, J., Tanveer, M., Singh, A. K., & Lv, Z. (2022). Multiobjective Evolution of the Explainable Fuzzy Rough Neural Network with Gene Expression Programming. IEEE Transactions on Fuzzy Systems, 30(10), 4190–4200. doi:10.1109/TFUZZ.2022.3141761.
[21] Slothuus, R., & Bisgaard, M. (2021). How Political Parties Shape Public Opinion in the Real World. American Journal of Political Science, 65(4), 896–911. doi:10.1111/ajps.12550.
[22] Satir, E., & Baser, E. (2022). Optimization of Interval Type-2 Fuzzy Logic Controller Using Real-Coded Quantum Clonal Selection Algorithm. Elektronika Ir Elektrotechnika, 28(3), 4–14. doi:10.5755/j02.eie.31148.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















