FATA-ResNet Network for CAD/CAM Integration in Cloud Manufacturing
Downloads
This paper focuses on the application of mechanical engineering CAD/CAM integration technology under the cloud manufacturing framework, aiming at solving the current technical integration problems in manufacturing informatization. The study analyzes the demand and current situation of 3D CAD/CAM integration in a cloud manufacturing environment, combines the mirage optimization algorithm (FATA) and residual neural network (ResNet), and proposes a CAD/CAM integration application analysis model based on the FATA-ResNet network. Firstly, the functional requirements of CAD/CAM technology integration in a cloud manufacturing platform are clarified, including 3D model uploading and downloading, process file generation, and cross-platform data sharing. Then, the hyperparameters of the ResNet network are optimized by the FATA algorithm to improve the accuracy and efficiency of the model in integration application analysis. The experimental results show that the FATA-ResNet model outperforms the traditional model in terms of accuracy, recall, and F1 score while possessing faster convergence speed and higher computational efficiency. In addition, the operation modules in the cloud platform, including the task management interface and 3D process editing function, were designed and validated, further demonstrating the practicality of the method. Future research will focus on the validation of multi-scene data, model resource optimization, and real-time collaborative operation to promote the in-depth application of CAD/CAM technology in intelligent manufacturing and provide support for the digital and intelligent development of manufacturing.
Downloads
[1] Do, T. K. L., Chau, T. T., Vu, T. K. L., & Nguyen, T. D. (2022). Study on Calculating, Designing and Manufacturing the Smart Infrared Drying System. Journal of Technical Education Science, 73, 64–73. doi:10.54644/jte.73.2022.1295.
[2] Shukla, M., & Shankar, R. (2024). Impact Assessment of Smart Manufacturing System Implementation in Small and Medium Enterprises: Moderating Role of Enabling Technology and Government Support. Global Journal of Flexible Systems Management, 25(3), 533–557. doi:10.1007/s40171-024-00400-4.
[3] Huo, X., & Wang, X. (2023). Internet of things for smart manufacturing based on advanced encryption standard (AES) algorithm with chaotic system. Results in Engineering, 20. doi:10.1016/j.rineng.2023.101589.
[4] Bao, Y., Zhang, X., Wang, C., & Ming, X. (2024). Further expansion from smart manufacturing system (SMS) to social smart manufacturing system (SSMS) based on industrial internet. Computers & Industrial Engineering, 191. doi:10.1016/j.cie.2024.110119.
[5] Corbett, C. J. (2024). OM Forum—The Operations of Well-Being: An Operational Take on Happiness, Equity, and Sustainability. Manufacturing & Service Operations Management, 26(2), 409–430. doi:10.1287/msom.2022.0521.
[6] Rudel, V., Vinogradov, G., Ganser, P., Bergs, T., Vahl, C., Frings, M., König, V., Schambach, M., Dietzel, S., & Königs, M. (2024). Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling. Procedia CIRP, 128, 532–537. doi:10.1016/j.procir.2024.04.015.
[7] Uzun, İ., Timur, A. H., & Şenel, K. (2024). In-vitro comparison of fracture resistance of CAD/CAM porcelain restorations for endodontically treated molars. BMC Oral Health, 24(1). doi:10.1186/s12903-024-04983-3.
[8] Al-Kharaz, A. A., Alwahhab, A. B. A., & Sabeeh, V. (2024). Innovative Date Fruit Classifier Based on Scatter Wavelet and Stacking Ensemble. HighTech and Innovation Journal, 5(2), 361–381. doi:10.28991/HIJ-2024-05-02-010.
[9] Jha, N. K., Jasti, N. V. K., Chaganti, P. K., Kota, S., & Vijayvargy, L. (2022). Validity and reliability of sustainable supply chain management frameworks in Indian smart manufacturing industries. Management of Environmental Quality: An International Journal, 34(4), 865–901. doi:10.1108/meq-04-2022-0098.
[10] Meka, S., Dowluru, S., & Dumpala, L. (2024). Automatic Feature Recognition Techniques for the Integration of CAD and CAM: A Review. Smart and Sustainable Manufacturing Systems, 8(1), 83–109. doi:10.1520/SSMS20230016.
[11] Yang, Z., Tan, Z., Zhen, L., Zhang, N., Liu, L., & Fan, T. (2024). Column generation for service assignment in cloud-based manufacturing. Computers & Operations Research, 161, 106436. doi:10.1016/j.cor.2023.106436.
[12] Qi, A., Zhao, D., Heidari, A. A., Liu, L., Chen, Y., & Chen, H. (2024). FATA: An efficient optimization method based on geophysics. Neurocomputing, 607, 128289. doi:10.1016/j.neucom.2024.128289.
[13] Ye, L. (2024). Design and manufacturing of mechanical parts based on CAD and CAM technology. Engineering Research Express, 6(4), 45411. doi:10.1088/2631-8695/ad8056.
[14] Wei, J., Zhang, X., Ji, Z., Wei, Z., & Li, J. (2022). DPLRS: Distributed Population Learning Rate Schedule. Future Generation Computer Systems, 132, 40–50. doi:10.1016/j.future.2022.02.001.
[15] Eid, N. K. (2025). A Review on the Power of CAD/CAM Technology and the Material Science in Modern Manufacturing. ERU Research Journal, 4(1), 2223–2250. doi:10.21608/erurj.2025.299610.1167.
[16] Hewa, T., Braeken, A., Liyanage, M., & Ylianttila, M. (2022). Fog Computing and Blockchain-Based Security Service Architecture for 5G Industrial IoT-Enabled Cloud Manufacturing. IEEE Transactions on Industrial Informatics, 18(10), 7174–7185. doi:10.1109/tii.2022.3140792.
[17] Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-aided Design, 59, 1-14. doi:10.1016/j.cad.2014.07.006.
[18] Cheng, X., Liu, Z., & Ning, Y. (2022). Editorial: Security of cloud service for the manufacturing industry. Transactions on Emerging Telecommunications Technologies, 33(4), 33. doi:10.1002/ett.4369.
[19] Chang, R. I., Lin, J. Y., & Hung, Y. H. (2024). Cloud-Based Machine Learning Methods for Parameter Prediction in Textile Manufacturing. Sensors, 24(4), 1304. doi:10.3390/s24041304.
[20] Tian, S., Xie, X., Xu, W., Liu, J., & Zhang, X. (2021). Dynamic assessment of sustainable manufacturing capability based on correlation relationship for industrial cloud robotics. The International Journal of Advanced Manufacturing Technology, 124(9), 3113–3135. doi:10.1007/s00170-021-08024-z.
[21] Popchev, I., Radeva, I., & Doukovska, L. (2023). Oracles Integration in Blockchain-Based Platform for Smart Crop Production Data Exchange. Electronics (Switzerland), 12(10), 2244. doi:10.3390/electronics12102244.
[22] Yin, X., Zhao, Z., & Yang, W. (2023). Optimizing cleaner productions of sustainable energies: A co-design framework for complementary operations of offshore wind and pumped hydro-storages. Journal of Cleaner Production, 396. doi:10.1016/j.jclepro.2022.135832.
[23] Ali, M. I., Lai, N. S., & Abdulla, R. (2024). Predictive maintenance of rotational machinery using deep learning. International Journal of Electrical and Computer Engineering, 14(1), 1112–1121. doi:10.11591/ijece.v14i1.pp1112-1121.
[24] Ghaly, M., Elbeltagi, E., Elsmadony, A., & Tantawy, M. A. (2024). Integration of Blockchain-Enabled Smart Contracts in Construction: SWOT Framework and Social Network Analysis. Civil Engineering Journal, 10(5), 1662–1697. doi:10.28991/CEJ-2024-010-05-020.
[25] Fernandes, G. V. O., & NassaniNassani, L. M. (2023). The Implementation of CAD/CAM Technology at Schools of Dentistry: A Short Communication. ENVIRO Dental Journal, 5(1), 06–08. doi:10.12944/edj.05.01.03.
[26] Shan, L., & Zhang, L. (2022). Application of Intelligent Technology in Facade Style Recognition of Harbin Modern Architecture. Sustainability (Switzerland), 14(12), 7073. doi:10.3390/su14127073.
[27] Maciura, Ł., Cieplak, T., Pliszczuk, D., Maj, M., & Rymarczyk, T. (2023). Autonomous Face Classification Online Self-Training System Using Pretrained ResNet50 and Multinomial Naïve Bayes. Sensors, 23(12), 5554. doi:10.3390/s23125554.
[28] Ben Nasr Barber, F., & Elloumi Oueslati, A. (2024). Human exons and introns classification using pre-trained Resnet-50 and GoogleNet models and 13-layers CNN model. Journal of Genetic Engineering and Biotechnology, 22(1), 100359. doi:10.1016/j.jgeb.2024.100359.
[29] Chen, M., Niu, R., & Zheng, W. (2022). Adaptive multi-scale neural network with Resnet blocks for solving partial differential equations. Nonlinear Dynamics, 111(7), 6499–6518. doi:10.1007/s11071-022-08161-4.
[30] Haruna, U., Ali, R., & Man, M. (2023). A new modification CNN using VGG19 and ResNet50V2 for classification of COVID-19 from X-ray radiograph images. Indonesian Journal of Electrical Engineering and Computer Science, 31(1), 369–377. doi:10.11591/ijeecs.v31.i1.pp369-377.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.





















