Hybrid Time Series Methods and Machine Learning for Seismic Analysis and Volcano Eruption Predict

Fridy Mandita, Ahmad Ashari, Moh. Edi Wibowo, Wiwit Suryanto

Abstract


Volcanic eruption refers to a natural catastrophe on Earth that poses imminent danger to communities surrounding volcanoes. Therefore, ongoing monitoring of volcanic processes is crucial for effective analysis and observation of volcanic activities preceding an eruption. In response to this, the study presents a novel hybrid time series approach, integrated with machine learning techniques, to enhance the identification and classification of seismic events associated with volcanic eruptions. In this case, time series techniques, including STA/LTA, template matching, and autocorrelation, were implemented to facilitate the detection and classification process. The challenges, however, lie in addressing noise and ensuring accuracy in the analysis of seismic signals. To resolve this, a new hybrid time series method was proposed to improve signal analysis accuracy by integrating multiple time series techniques. In practice, the dataset was collected from Mount Merapi in Indonesia between 2019 and 2021, consisting of a compilation of seismic data categorized by event type, thus enhancing classification accuracy. On top of that, prior to implementing machine learning techniques for signal classification, the hybrid method was employed to efficiently remove noise, ensuring that genuine seismic events were clearly distinguished from spurious signals. Notably, the experimental learning rate was set at 0.01. The results demonstrated that the proposed hybrid method outperformed stand-alone time series techniques, achieving an accuracy of 0.93 to 0.95. This signifies the effectiveness of precise seismic event recognition and categorization, greatly enhancing the volcano monitoring system. Furthermore, the findings offer substantial improvements in the forecasting and risk mitigation associated with volcanic eruptions, hence, advancing reliable seismic analysis methodologies. Ultimately, the method enhances hybrid methods and machine learning for seismic event analysis and volcano monitoring.

 

Doi: 10.28991/HIJ-2025-06-01-08

Full Text: PDF


Keywords


Seismic Events; Hybrid Time Series; Machine Learning; Volcano Eruption.

References


Supriyo, B., Hidayat, S. S., Suharjono, A., Anif, M., & Koesuma, S. (2015). Design of real-time gas monitoring system based-on wireless sensor networks for Merapi volcano. 2014 1st International Conference on Information Technology, Computer, and Electrical Engineering: Green Technology and Its Applications for a Better Future, ICITACEE 2014 - Proceedings, 30–34. doi:10.1109/ICITACEE.2014.7065709.

Ratdomopurbo, A., Beauducel, F., Subandriyo, J., Agung Nandaka, I. G. M., Newhall, C. G., Suharna, Sayudi, D. S., Suparwaka, H., & Sunarta. (2013). Overview of the 2006 eruption of Mt. Merapi. Journal of Volcanology and Geothermal Research, 261, 87–97. doi:10.1016/j.jvolgeores.2013.03.019.

Sholihat, S. S., Indratno, S. W., & Mukhaiyar, U. (2021). The role of parameters in Bayesian Online Changepoint Detection: detecting early warning of mount Merapi eruptions. Heliyon, 7(7), e07482. doi:10.1016/j.heliyon.2021.e07482.

Surono, Jousset, P., Pallister, J., Boichu, M., Buongiorno, M. F., Budisantoso, A., Costa, F., Andreastuti, S., Prata, F., Schneider, D., Clarisse, L., Humaida, H., Sumarti, S., Bignami, C., Griswold, J., Carn, S., Oppenheimer, C., & Lavigne, F. (2012). The 2010 explosive eruption of Java’s Merapi volcano-A “100-year” event. Journal of Volcanology and Geothermal Research, 241–242, 121–135. doi:10.1016/j.jvolgeores.2012.06.018.

Chan, H. P., Konstantinou, K. I., & Blackett, M. (2021). Spatio-temporal surface temperature variations detected by satellite thermal infrared images at Merapi volcano, Indonesia. Journal of Volcanology and Geothermal Research, 420. doi:10.1016/j.jvolgeores.2021.107405.

Antriyandarti, E., Ferichani, M., & Ani, S. W. (2013). Sustainability of Post-Eruption Socio Economic Recovery for the Community on Mount Merapi Slope through Horticulture Agribusiness Region Development (Case Study in Boyolali District). Procedia Environmental Sciences, 17, 46–52. doi:10.1016/j.proenv.2013.02.010.

Sunardi, S., Dede, M., Wibowo, S. B., Prasetyo, Y., Astari, A. J., Lukman, L., Lavigne, F., Gomez, C., Nurani, I. W., Sakai, Y., & Kamarudin, M. K. A. (2024). Preliminary assessment of river ecosystem services in the volcanic area of Mount Merapi, Indonesia. Aquatic Ecology, 58(3), 819–832. doi:10.1007/s10452-024-10107-4.

Falcin, A., Métaxian, J. P., Mars, J., Stutzmann, É., Komorowski, J. C., Moretti, R., Malfante, M., Beauducel, F., Saurel, J. M., Dessert, C., Burtin, A., Ucciani, G., de Chabalier, J. B., & Lemarchand, A. (2021). A machine-learning approach for automatic classification of volcanic seismicity at La Soufrière Volcano, Guadeloupe. Journal of Volcanology and Geothermal Research, 411. doi:10.1016/j.jvolgeores.2020.107151.

Espinosa-Ortega, T., Budi-Santoso, A., Sulistiyani, Win, N. T. Z., Widiwijayanti, C., & Costa, F. (2022). Probabilistic analysis to correlate seismic data with lava extrusion phases at Merapi volcano (Indonesia). Journal of Volcanology and Geothermal Research, 426. doi:10.1016/j.jvolgeores.2022.107537.

Audretsch, J. (2020). Earthquake Detection using Deep Learning Based Approaches. KAUST Research Repository, KAUST: King Abdullah University of Science and Technology, Saudi Arabia. doi:10.25781/KAUST-52098.

Wiszniowski, J., Plesiewicz, B., & Lizurek, G. (2021). Machine learning applied to anthropogenic seismic events detection in Lai Chau reservoir area, Vietnam. Computers and Geosciences, 146. doi:10.1016/j.cageo.2020.104628.

Titos, M., Bueno, A., Garcia, L., & Benitez, C. (2018). A Deep Neural Networks Approach to Automatic Recognition Systems for Volcano-Seismic Events. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1533–1544. doi:10.1109/JSTARS.2018.2803198.

Kubo, H., Naoi, M., & Kano, M. (2024). Recent advances in earthquake seismology using machine learning. Earth, Planets and Space, 76(1), 36. doi:10.1186/s40623-024-01982-0.

Lara, F., Lara-Cueva, R., Larco, J. C., Carrera, E. V., & León, R. (2021). A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano. Journal of Volcanology and Geothermal Research, 409, 107142. doi:10.1016/j.jvolgeores.2020.107142.

Malfante, M., Dalla Mura, M., Mars, J. I., Métaxian, J. P., Macedo, O., & Inza, A. (2018). Automatic Classification of Volcano Seismic Signatures. Journal of Geophysical Research: Solid Earth, 123(12), 10,645-10,658. doi:10.1029/2018JB015470.

Titos, M., Bueno, A., García, L., Benítez, M. C., & Ibañez, J. (2019). Detection and Classification of Continuous Volcano-Seismic Signals with Recurrent Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 1936–1948. doi:10.1109/TGRS.2018.2870202.

Vaezi, Y., & van der Baan, M. (2015). Comparison of the STA/LTA and power spectral density methods for microseismic event detection. Geophysical Journal International, 203(3), 1896–1908. doi:10.1093/gji/ggv419.

Qu, S., Guan, Z., Verschuur, E., & Chen, Y. (2020). Automatic high-resolution microseismic event detection via supervised machine learning. Geophysical Journal International, 222(3), 1881–1895. doi:10.1093/gji/ggaa193.

Pantobe, L., Burtin, A., Chanard, K., & Komorowski, J. C. (2024). Evolution of shallow volcanic seismicity in the hydrothermal system of La Soufrière de Guadeloupe following the April 2018 MLV 4.1 earthquake. Journal of Volcanology and Geothermal Research, 447. doi:10.1016/j.jvolgeores.2023.107989.

Ma, H., Chu, R., Sheng, M., & Yu, Z. (2020). Template matching for simple waveforms with low signal-to-noise ratio and its application to icequake detection. Earthquake Science, 33(5–6), 256–263. doi:10.29382/eqs-2020-0256-01.

Yang, D. H., Zhou, X., Wang, X. Y., & Huang, J. P. (2021). Mirco-earthquake source depth detection using machine learning techniques. Information Sciences, 544, 325–342. doi:10.1016/j.ins.2020.07.045.

Ikeda, H., & Takagi, R. (2019). Coseismic changes in subsurface structure associated with the 2018 Hokkaido Eastern Iburi Earthquake detected using autocorrelation analysis of ambient seismic noise. Earth, Planets and Space, 71(1), 1-11. doi:10.1186/s40623-019-1051-5.

Nurtas, M., Zhantaev, Z., & Altaibek, A. (2024). Earthquake time-series forecast in Kazakhstan territory: Forecasting accuracy with SARIMAX. Procedia Computer Science, 231, 353–358. doi:10.1016/j.procs.2023.12.216.

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90(1), 3–14. doi:10.1785/0220180259.

Liu, H., Song, J., & Li, S. (2022). Seismic Event Identification Based on a Generative Adversarial Network and Support Vector Machine. Frontiers in Earth Science, 10. doi:10.3389/feart.2022.814655.

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767-771.. doi:10.1126/science.aaw6888.

Jiao, P., & Alavi, A. H. (2020). Artificial intelligence in seismology: Advent, performance and future trends. Geoscience Frontiers, 11(3), 739–744. doi:10.1016/j.gsf.2019.10.004.

Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru. Journal of Volcanology and Geothermal Research, 451, 108097. doi:10.1016/j.jvolgeores.2024.108097.

Ozkaya, S. G., Baygin, M., Barua, P. D., Tuncer, T., Dogan, S., Chakraborty, S., & Acharya, U. R. (2024). An automated earthquake classification model based on a new butterfly pattern using seismic signals. Expert Systems with Applications, 238. doi:10.1016/j.eswa.2023.122079.

Lara, F., León, R., Lara-Cueva, R., Tinoco-S., A. F., & Ruiz, M. (2022). Detection of volcanic micro earthquakes based on homomorphic deconvolution and STA/LTA. Journal of Volcanology and Geothermal Research, 421. doi:10.1016/j.jvolgeores.2021.107439.

Song, Y., Lee, J., Yeeh, Z., Kim, M., & Byun, J. (2023). Improved lithospheric seismic velocity and density model of the Korean Peninsula from ambient seismic noise data using machine learning. Journal of Asian Earth Sciences, 254. doi:10.1016/j.jseaes.2023.105728.

Coombs, M. L., Wech, A. G., Haney, M. M., Lyons, J. J., Schneider, D. J., Schwaiger, H. F., Wallace, K. L., Fee, D., Freymueller, J. T., Schaefer, J. R., & Tepp, G. (2018). Short-Term Forecasting and Detection of Explosions During the 2016–2017 Eruption of Bogoslof Volcano, Alaska. Frontiers in Earth Science, 6. doi:10.3389/feart.2018.00122.

Dempsey, D. E., Cronin, S. J., Mei, S., & Kempa-Liehr, A. W. (2020). Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nature Communications, 11(1), 3562. doi:10.1038/s41467-020-17375-2.

Manley, G. F., Pyle, D. M., Mather, T. A., Rodgers, M., Clifton, D. A., Stokell, B. G., Thompson, G., Londoño, J. M., & Roman, D. C. (2020). Understanding the timing of eruption end using a machine learning approach to classification of seismic time series. Journal of Volcanology and Geothermal Research, 401. doi:10.1016/j.jvolgeores.2020.106917.

Saad, O. M., & Chen, Y. (2021). Earthquake Detection and P-Wave Arrival Time Picking Using Capsule Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 6234–6243. doi:10.1109/TGRS.2020.3019520.

Mandita, F., Ashari, A., Wibowo, M., & Suryanto, W. (2024). A Prototype for The Detection and Classification of Seismic Events Using STA/LTA And Machine Learning. Journal of Theoretical and Applied Information Technology, 102(10), 4559-4570.

Mustafa, A. H., Abdelmoneim, F. M., Matta, M. G., Barghash, T. O., & Gomaa, W. (2022). Automatic Forecasting of Volcanoes Eruption Time. Proceedings of the 2022 16th International Conference on Ubiquitous Information Management and Communication, IMCOM 2022, 1-8. doi:10.1109/IMCOM53663.2022.9721804.

Abebe, E., Kebede, H., Kevin, M., & Demissie, Z. (2023). Earthquakes magnitude prediction using deep learning for the Horn of Africa. Soil Dynamics and Earthquake Engineering, 170. doi:10.1016/j.soildyn.2023.107913.

Sandhya, G., Babu, J. B., Babu, G. P., & Yallamandaiah, S. (2023). CNN Based Automatic Fault Detection in 3D Seismic Images. 2023 7th International Conference On Computing, Communication, Control And Automation, ICCUBEA 2023, 1-6. doi:10.1109/ICCUBEA58933.2023.10392122.

Lestari, I. (2021). 4 Levels of Volcano Status. Available online: https://ilmugeografi.com/ilmu-bumi/gunung/tingkatan-status-gunung-berapi (accessed on February 2025).


Full Text: PDF

DOI: 10.28991/HIJ-2025-06-01-08

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fridy Mandita, Ahmad Ashari, Moh. Edi Wibowo, Wiwit Suryanto